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INTRODUCTION 

Science consists of the theories and laws that are the general truths of 
nature. Physics is concerned with describing the interactions of energy, 
matter, space, and time, and it is especially interested in what fundamental 
mechanisms underlie every phenomenon. The concern for describing the 
basic phenomena in nature essentially defines the realm of physics. 
Physics aims to describe the function of everything around us, from the 
movement of tiny charged particles to the motion of people, cars, and 
spaceships. In fact, almost everything around you can be described quite 
accurately by the laws of physics. 

Physics is the foundation of many important disciplines and 
contributes directly to others. Chemistry, for example – since it deals with 
the interactions of atoms and molecules – is rooted in atomic and 
molecular physics. Most branches of engineering are applied physics. In 
architecture, physics is at the heart of structural stability, and is involved in 
the acoustics, heating, lighting, and cooling of buildings. Parts of geology 
rely heavily on physics, such as radioactive dating of rocks, earthquake 
analysis, and heat transfer in the Earth. Some disciplines, such as 
biophysics and geophysics, are hybrids of physics and other disciplines. 

The laws of nature are concise descriptions of the universe around 
us; they are human statements of the underlying laws or rules that all 
natural processes follow. Such laws are intrinsic to the universe; humans 
did not create them and so cannot change them. We can only discover and 
understand them. Their discovery is a very human endeavor, with all the 
elements of mystery, imagination, struggle, triumph, and disappointment 
inherent in any creative effort. The cornerstone of discovering natural laws 
is observation; science must describe the universe as it is, not as we may 
imagine it to be. 

The range of objects and phenomena studied in physics is immense. 
From the incredibly short lifetime of a nucleus to the age of the Earth, 
from the tiny sizes of sub-nuclear particles to the vast distance to the edges 
of the known universe, from the force exerted by a jumping flea to the 
force between Earth and the Sun. Giving numerical values for physical 
quantities and equations for physical principles allows us to understand 
nature much more deeply than does qualitative description alone. To 
comprehend these vast ranges, we must also have accepted units in which 
to express them. And we shall find that (even in the potentially mundane 



discussion of meters, kilograms, and seconds) a profound simplicity of 
nature appears – all physical quantities can be expressed as combinations 
of only four fundamental physical quantities: length, mass, time, and 
electric current. We define a physical quantity either by specifying how it 
is measured or by stating how it is calculated from other measurements. 
For example, we define distance and time by specifying methods for 
measuring them, whereas we define average speed by stating that it is 
calculated as distance traveled divided by time of travel. Measurements of 
physical quantities are expressed in terms of units, which are standardized 
values. 



1. THEORY

1.1. Mechanics 

The study of physics begins with kinematics which is defined as the 
study of motion without considering its causes. The word “kinematics” 
comes from a Greek term meaning motion. In one-dimensional kinematics 
and two-dimensional kinematics we will study only the motion of a 
football, for example, without worrying about what forces cause or change 
its motion. In order to describe the motion of an object, you must first be 
able to describe its position – where it is at any particular time. More 
precisely, you need to specify its position relative to a convenient 
reference frame. Earth is often used as a reference frame, and we often 
describe the position of an object as it relates to stationary objects in that 
reference frame. For example, a rocket launch would be described in terms 
of the position of the rocket with respect to the Earth. In other cases, we 
use reference frames that are not stationary but are in motion relative to the 
Earth. To describe the position of a person in an airplane, for example, we 
use the airplane, not the Earth, as the reference frame. If an object moves 
relative to a reference frame, then the object’s position changes. This 
change in position is known as displacement. The word “displacement” 
implies that an object has moved, or has been displaced. Displacement is 
the change in position of an object: 

ݔ∆  ൌ ௙ݔ െ ଴, (1.1.1)ݔ

where Δx is displacement, xf is the final position, and x0 is the initial 
position.  

In physics, the definition of time is simple – time is change, or the 
interval over which change occurs. It is impossible to know that time has 
passed unless something changes. The amount of time or change is 
calibrated by comparison with a standard. The SI (this acronym is derived 
from the French Système International) unit for time is the second, 
abbreviated [s]. Elapsed time Δt is the difference between the ending time 
and beginning time: 

ݐ∆   ൌ ௙ݐ െ ଴, (1.1.2)ݐ



where Δt is the change in time or elapsed time, tf is the time at the end of 
the motion, and t0 is the time at the beginning of the motion (Δ means the 
change in the quantity that follows it). 

In everyday language, most people use the terms “speed” and 
“velocity” interchangeably. In physics, however, they do not have the 
same meaning and they are distinct concepts. One major difference is that 
speed has no direction. Thus speed is a scalar. Just as we need to 
distinguish between instantaneous velocity and average velocity, we also 
need to distinguish between instantaneous speed and average speed. 
Instantaneous speed is the magnitude of instantaneous velocity. Average 
speed ῡ is the distance traveled divided by elapsed time: 

ݒ̅ ൌ
ݔ∆
 .ݐ∆

(1.1.3)

Another important value in mechanics – average acceleration തܽ is 
the rate at which velocity changes: 

തܽ ൌ ∆௩
∆௧
ൌ ௩೑ି௩బ

௧೑ି௧బ
, (1.1.4)

where v is velocity, and t is time. 
Solving for Displacement Δx and Final Position x from Average 

Velocity when Acceleration a is Constant: 

ݒ̅ ൌ
ݔ െ ଴ݔ
ݐ , (1.1.5)

ݔ ൌ ଴ݔ ൅ (1.1.6) ,ݐݒ̅

ݒ̅						 ൌ
଴ݒ ൅ ݒ
2

ሺconst ܽሻ. (1.1.7)

Solving for final velocity: 

ܽ ൌ
ݒ െ ଴ݒ
ݐ

ሺconst ܽሻ, (1.1.8)

ݒ ൌ ሺconstݐ଴ܽݒ ܽሻ. (1.1.9)



Solving for final position, when velocity is not constant (a ≠ 0): 

ݒ̅ ൌ ଴ݒ ൅
1
2  ,ݐܽ

(1.1.10)

ݔ ൌ ଴ݔ ൅ ݐ଴ݒ ൅
1
ݐ2ܽ

ଶሺconst ܽሻ. (1.1.11)

Falling objects form an interesting class of motion problems. The 
most remarkable and unexpected fact about falling objects is that, if air 
resistance and friction are negligible, then in a given location all objects 
fall toward the center of Earth with the same constant acceleration, 
independent of their mass. Kinematic equations for objects in free-fall, 
where acceleration a = –g (≈9.81 m/s2): 

ݒ ൌ ଴ݒ െ (1.1.12) ,ݐ݃

ݕ ൌ ଴ݕ ൅ ݐ଴ݒ െ
1
ݐ2݃

ଶ, (1.1.13)

ଶݒ ൌ ଴ଶݒ െ 2݃ሺݕ െ ଴ሻ. (1.1.14)ݕ

This equation defines the maximum height h of a projectile and 
depends only on the vertical component y of the initial velocity: 

݄ ൌ
଴௬ଶݒ

2݃ . 
(1.1.15)

The study of motion is kinematics, but kinematics only describes the 
way objects move – their velocity and their acceleration. Dynamics 
considers the forces that affect the motion of moving objects and systems. 
Newton’s laws of motion are the foundation of dynamics. These laws 
provide an example of the breadth and simplicity of principles under 
which nature functions. They are also universal laws in that they apply to 
similar situations on Earth as well as in space. It was not until the advent 
of modern physics early in the 20th century that it was discovered that 
Newton’s laws of motion produce a good approximation to motion only 
when the objects are moving at speeds much, much less than the speed of 



light and when those objects are larger than the size of most molecules 
(≈10−9 m in diameter). These constraints define the realm of classical 
mechanics. Dynamics is the study of the forces that cause objects and 
systems to move. To understand this, we need a working definition of 
force. Our intuitive definition of force – that is, a push or a pull – is a good 
place to start. We know that a push or pull has both magnitude and 
direction (therefore, it is a vector quantity) and can vary considerably in 
each regard. 

Experience suggests that an object at rest will remain at rest if left 
alone, and that an object in motion tends to slow down and stop unless 
some effort is made to keep it moving. What Newton’s first law of motion 
states, however, is the following: a body at rest remains at rest, or, if in 
motion, remains in motion at a constant velocity unless acted on by a net 
external force. The property of a body to remain at rest or to remain in 
motion with constant velocity is called inertia. Newton’s first law is often 
called the law of inertia. As we know from experience, some objects have 
more inertia than others. The inertia of an object is measured by its 
mass m. Roughly speaking, mass is a measure of the amount of “stuff” 
(or matter) in something. The quantity or amount of matter in an object is 
determined by the numbers of atoms and molecules of various types it 
contains. Unlike weight, mass does not vary with location. The mass of an 
object is the same on Earth, in orbit, or on the surface of the Moon. In 
practice, it is very difficult to count and identify all of the atoms and 
molecules in an object, so masses are not often determined in this manner. 
Operationally, the masses of objects are determined by comparison with 
the standard kilogram. 

Newton’s second law of motion is closely related to Newton’s first 
law of motion. It mathematically states the cause and effect relationship 
between force F and changes in motion. Newton’s second law of motion is 
more quantitative and is used extensively to calculate what happens in 
situations involving a force: The acceleration of a system is directly 
proportional to and in the same direction as the net external force acting on 
the system, and inversely proportional to its mass. In equation form, 
Newton’s second law of motion is: 

തܽ ൌ
തܨ
݉. 

(1.1.16)



This is the equation for weight – the gravitational force on a mass m: 

ഥݓ ൌ ݉݃̅. (1.1.17)

Recall that g can take a positive or negative value, depending on the 
positive direction in the coordinate system. Mass and weight are often used 
interchangeably in everyday language. However, in science, these terms 
are distinctly different from one another. Mass is a measure of how much 
matter is in an object. The typical measure of mass is the kilogram (or the 
“slug” in English units). Weight, on the other hand, is a measure of the 
force of gravity acting on an object. Weight is equal to the mass of an 
object [m] multiplied by the acceleration due to gravity [g]. Like any other 
force, weight is measured in terms of newtons [N = kg·m/s2] (or pounds in 
English units). 

Newton’s third law of motion is the symmetry in forces: whenever 
one body exerts a force on a second body, the first body experiences a 
force that is equal in magnitude and opposite in direction to the force that 
it exerts. In equation form: 

തଵ,ଶܨ ൌ െܨതଶ,ଵ. (1.1.18)

Forces are given many names, such as push, pull, thrust, lift, weight, 
friction, and tension. Traditionally, forces have been grouped into several 
categories and given names relating to their source, how they are 
transmitted, or their effects. Weight (also called force of gravity) is a 
pervasive force that acts at all times and must be counteracted to keep an 
object from falling. A tension is a force along the length of a medium, 
especially a force carried by a flexible medium, such as a rope or cable. 
The word “tension” comes from a Latin word meaning “to stretch”. Not 
coincidentally, the flexible cords that carry muscle forces to other parts of 
the body are called tendons. Any flexible connector, such as a string, rope, 
chain, wire, or cable, can exert pulls only parallel to its length; thus, a 
force carried by a flexible connector is a tension with direction parallel to 
the connector. It is important to understand that tension is a pull in a 
connector. 

There is another distinction among forces in addition to the types 
already mentioned. Some forces are real, whereas others are not. Real 
forces are those that have some physical origin, such as the gravitational 



pull. Contrastingly, fictitious forces are those that arise simply because an 
observer is in an accelerating frame of reference, such as one that rotates 
(like a merry-go-round) or undergoes linear acceleration (like a car 
slowing down). For example, if a satellite is heading due north above 
Earth’s northern hemisphere, then to an observer on Earth it will appear to 
experience a force to the west that has no physical origin. Of course, what 
is happening here is that Earth is rotating toward the east and moves east 
under the satellite. In Earth’s frame this looks like a westward force on the 
satellite, or it can be interpreted as a violation of Newton’s first law 
(the law of inertia). An inertial frame of reference is one in which all 
forces are real and, equivalently, one in which Newton’s laws have the 
simple forms. Earth’s rotation is slow enough that Earth is nearly an 
inertial frame. You ordinarily must perform precise experiments to observe 
fictitious forces and the slight departures from Newton’s laws, such as the 
effect just described. On the large scale, such as for the rotation of weather 
systems and ocean currents, the effects can be easily observed. The crucial 
factor in determining whether a frame of reference is inertial is whether it 
accelerates or rotates relative to a known inertial frame. Unless stated 
otherwise, all phenomena discussed in this text are considered in inertial 
frames. 

One of the most remarkable simplifications in physics is that only 
four distinct forces account for all known phenomena. In fact, nearly all of 
the forces we experience directly are due to only one basic force, called the 
electromagnetic force (the gravitational force is the only force we 
experience directly that is not electromagnetic). This is a tremendous 
simplification of the myriad of apparently different forces we can list, only 
a few of which were discussed in the previous section. As we will see, the 
basic forces are all thought to act through the exchange of microscopic 
carrier particles, and the characteristics of the basic forces are determined 
by the types of particles exchanged. Action at a distance, such as the 
gravitational force of Earth on the Moon, is explained by the existence of a 
force field rather than by “physical contact”. The four basic forces are the 
gravitational force, the electromagnetic force, the weak nuclear force, and 
the strong nuclear force. Their properties are summarized in Table 1. Since 
the weak and strong nuclear forces act over an extremely short range, the 
size of a nucleus or less, we do not experience them directly, although they 
are crucial to the very structure of matter. These forces determine which 
nuclei are stable and which decay, and they are the basis of the release of 



energy in certain nuclear reactions. Nuclear forces determine not only the 
stability of nuclei, but also the relative abundance of elements in nature. 

Table 1 
Properties of the Four Basic Forces 

Force Approximate 
Relative 
Strengths  

Range Attraction/Repulsion Carrier 
Particle 

Gravitational 10−38 ∞ attractive only gravitation
Electromagnetic 10−2 ∞ attractive and repulsive photon 
Weak nuclear 10−13 < 10−18 m attractive and repulsive W+, W−, Z0

Strong nuclear 1 < 10−15 m attractive and repulsive gluons

Attempts to unify the four basic forces are discussed in relation to 
elementary particles. By “unify” we mean finding connections between the 
forces that show that they are different manifestations of a single force. 
Even if such unification is achieved, the forces will retain their separate 
characteristics on the macroscopic scale and may be identical only under 
extreme conditions such as those existing in the early universe. The 
concept of a force field is also used in connection with electric charge. It is 
also a useful idea for all the basic forces. Fields help us to visualize forces 
and how they are transmitted, as well as to describe them with precision 
and to link forces with subatomic carrier particles. The graviton is a 
proposed particle, though it has not yet been observed by scientists. The 
particles W+, W−, and Z0 are called vector bosons. These were predicted by 
theory and first observed in 1983. There are eight types of gluons proposed 
by scientists, and their existence is indicated by meson exchange in the 
nuclei of atoms. 

Friction is a force that is around us all the time that opposes relative 
motion between systems in contact but also allows us to move (which you 
have discovered if you have ever tried to walk on ice). While a common 
force, the behavior of friction is actually very complicated and is still not 
completely understood. Friction is a force that opposes relative motion 
between systems in contact. Magnitude of static friction fs is: 

௦݂ ൑ μ௦ܰ, (1.1.19)

where μs is the coefficient of static friction and N is the magnitude of the 
normal force. 



Another interesting force in everyday life is the force of drag on an 
object when it is moving in a fluid (either a gas or a liquid). Like friction, 
the drag force always opposes the motion of an object. Unlike simple 
friction, the drag force is proportional to some function of the velocity of 
the object in that fluid. This functionality is complicated and depends upon 
the shape of the object, its size, its velocity, and the fluid it is in. Drag 
force FD is found to be proportional to the square of the speed of the 
object. Mathematically: 

ଶ (1.1.20)ݒ~஽ܨ
or 

஽ܨ ൌ
1
ݒܣρܥ2

ଶ, (1.1.21)

where C is the drag coefficient, A is the area of the object facing the fluid, 
and ρ is the density of the fluid. 

We now move from consideration of forces that affect the motion of 
an object (such as friction and drag) to those that affect an object’s shape. 
If a bulldozer pushes a car into a wall, the car will not move but it will 
noticeably change shape. A change in shape due to the application of a 
force is a deformation. Even very small forces are known to cause some 
deformation. For small deformations, two important characteristics are 
observed. First, the object returns to its original shape when the force is 
removed – that is, the deformation is elastic for small deformations. 
Second, the size of the deformation is proportional to the force – that is, 
for small deformations, Hooke’s law is obeyed. In equation form, Hooke’s 
law is given by: 

ܨ ൌ (1.1.22) ,ܮ∆݇

where ΔL is the amount of deformation (the change in length, for example) 
produced by the force F, and k is a proportionality constant that depends 
on the shape and composition of the object and the direction of the force. 
Note that this force is a function of the deformation ΔL – it is not constant 
as a kinetic friction force is. 

In Kinematics, we studied motion along a straight line and 
introduced such concepts as displacement, velocity, and acceleration. 
Two-Dimensional Kinematics dealt with motion in two dimensions. 



Projectile motion is a special case of two-dimensional kinematics in which 
the object is projected into the air, while being subject to the gravitational 
force, and lands a distance away. Now, we consider situations where the 
object does not land but moves in a curve. We begin the study of uniform 
circular motion by defining two angular quantities needed to describe 
rotational motion. The arc length Δs is the distance traveled along a 
circular path as shown in Fig. 1. 

Fig. 1. The radius of a circle is rotated through an angle Δθ.  
The arc length Δs is described on the circumference 

Note that r is the radius of curvature of the circular path. We know 
that for one complete revolution, the arc length is the circumference of a 
circle of radius r. The circumference of a circle is 2πr. Thus for one 
complete revolution the rotation angle is: 

∆θ ൌ ଶ஠௥
௥
ൌ 2π. (1.1.23)

This result is the basis for defining the units used to measure rotation 
angles, Δθ to be radians [rad], defined so that: 

2π	݀ܽݎ ൌ 1 revolurion. 

How fast is an object rotating? We define angular velocity ω as the 
rate of change of an angle. In symbols, this is: 

ω ൌ
∆θ
(1.1.24) ,ݐ∆



where an angular rotation Δθ takes place in a time Δt. The greater the 
rotation angle in a given amount of time, the greater the angular velocity. 
The units for angular velocity are radians per second [rad/s]. 

From ∆θ ൌ ∆௦
௥

 we see that ݏ߂ ൌ  θ. Substituting this into the߂ݎ

expression for v gives: 

ݒ ൌ ௥∆஘
∆௧

ൌ ω. (1.1.25)ݎ

In uniform circular motion, the direction of the velocity changes 
constantly, so there is always an associated acceleration, even though the 
magnitude of the velocity might be constant. We call the acceleration of an 
object moving in uniform circular motion (resulting from a net external 
force) the centripetal acceleration ac; centripetal means “toward the 

center” or “center seeking”. Finally, noting that 
∆௩
∆௧
ൌ ܽ௖ and that 

∆௦
∆௧
ൌ  ,,ݒ

the linear or tangential speed, we see that the magnitude of the centripetal 
acceleration is: 

ܽ௖ ൌ
ଶݒ

ݎ ൌ ωଶ, (1.1.26)ݎ

which is the acceleration of an object in a circle of radius r at a speed v. 
Any force or combination of forces can cause a centripetal or radial 

acceleration. Just a few examples are the tension in the rope on a tether 
ball, the force of Earth’s gravity on the Moon, friction between roller 
skates and a rink floor, a banked roadway’s force on a car, and forces on 
the tube of a spinning centrifuge. Any net force causing uniform circular 
motion is called a centripetal force. The direction of a centripetal force is 
toward the center of curvature, the same as the direction of centripetal 
acceleration. For uniform circular motion, the acceleration is the 
centripetal acceleration – a = ac. Thus, the magnitude of centripetal 
force Fc is: 

௖ܨ ൌ ݉ܽ௖ ൌ ݉
ଶݒ

ݎ ൌ ωଶ. (1.1.27)ݎ݉



The gravitational force is relatively simple. It is always attractive, 
and it depends only on the masses involved and the distance between 
them. Stated in modern language, Newton’s universal law of gravitation 
states that every particle in the universe attracts every other particle with a 
force along a line joining them. The force is directly proportional to the 
product of their masses and inversely proportional to the square of the 
distance between them. The bodies we are dealing with tend to be large. 
To simplify the situation we assume that the body acts as if its entire mass 
is concentrated at one specific point called the center of mass. For two 
bodies having masses m and M with a distance r between their centers of 
mass, the equation for Newton’s universal law of gravitation is: 

ܨ ൌ ܩ ௠ெ
௥మ

, (1.1.28)

where F is the magnitude of the gravitational force and G is a 
proportionality factor called the gravitational constant. G is a universal 
gravitational constant – that is, it is thought to be the same everywhere in 
the universe. It has been measured experimentally to be: 

G = 6.673·10−11 [N·m2/kg2]. 

Energy plays an essential role both in everyday events and in 
scientific phenomena. Not only does energy have many interesting forms, 
it is involved in almost all phenomena, and is one of the most important 
concepts of physics. What makes it even more important is that the total 
amount of energy in the universe is constant. Energy can change forms, 
but it cannot appear from nothing or disappear without a trace. Energy is 
thus one of a handful of physical quantities that we say is conserved. 
Conservation of energy (as physicists like to call the principle that energy 
can neither be created nor destroyed) is based on experiment. Even as 
scientists discovered new forms of energy, conservation of energy has 
always been found to apply. There is no simple, yet accurate, scientific 
definition for energy. Energy is characterized by its many forms and the 
fact that it is conserved. We can loosely define energy as the ability to do 
work, admitting that in some circumstances not all energy is available to 
do work. Because of the association of energy with work, we begin the 
chapter with a discussion of work. Work is intimately related to energy 
and how energy moves from one system to another or changes form. For 



work, in the scientific sense, to be done, a force must be exerted and there 
must be motion or displacement in the direction of the force. Formally, the 
work done on a system by a constant force is defined to be the product of 
the component of the force in the direction of motion times the distance 
through which the force acts. For one-way motion in one dimension, this is 
expressed in equation form as: 

ܹ ൌ ݀ܨ cos θ, (1.1.29)

where W is work, d is the displacement of the system, and θ is the angle 
between the force vector F and the displacement vector d. 

Work and energy have the same units. From the definition of work, 
we see that those units are force times distance. Thus, in SI units, work and 
energy are measured in newton-meters. A newton-meter is given the 
special name joule [J = N·m = kg·m2/s2]. One joule is not a large amount 
of energy; it would lift a small 100-gram apple a distance of about 1 meter. 

We know from the study of Newton’s laws in Dynamics: Force and 
Newton's Laws of Motion that net force causes acceleration. Work done by 
the net force gives, system energy of motion, and in the process we will 
also find an expression for the energy of motion. Network is defined to be 
the sum of work done by all external forces – that is, network is the work 
done by the net external force Fnet . In equation form, this is: 

௡ܹ௘௧ ൌ ௡௘௧݀cosθ, (1.1.30)ܨ

where θ is the angle between the force vector and the displacement vector. 

The network on a system equals the change in the quantity 
ଵ
ଶ
 :ଶݒ݉

௡ܹ௘௧ ൌ
1
ݒ2݉

ଶ െ
1
଴ݒ2݉

ଶ. (1.1.31)

The quantity 
ଵ
ଶ
 ଶ in the work-energy theorem is defined to be theݒ݉

translational kinetic energy (KE) of a mass m moving at a speed v. In 
equation form, the translational kinetic energy: 

ܧܭ ൌ
1
ݒ2݉

ଶ, (1.1.32)



is the energy associated with translational motion. Kinetic energy is a form 
of energy associated with the motion of a particle, single body, or system 
of objects moving together. 

Lifting objects is work in both the scientific and everyday sense – it 
is work done against the gravitational force. When there is work, there is a 
transformation of energy. The work done against the gravitational force 
goes into an important form of stored energy. If the object is lifted straight 
up at constant speed, then the force needed to lift it is equal to its weight 
mg. The work done on the mass is then 

ܹ ൌ ݀ܨ ൌ ݄݉݃. (1.1.33)

We define this to be the gravitational potential energy (PEg) put into 
or gained by the object-Earth system. This energy is associated with the 
state of separation between two objects that attract each other by the 
gravitational force. For convenience, we refer to this as the PEg gained by 
the object, recognizing that this is energy stored in the gravitational field 
of Earth. Gravitational potential energy may be converted to other forms of 
energy, such as kinetic energy. Work is done by a force, and some forces, 
such as weight, have special characteristics. A conservative force is one, 
like the gravitational force, for which work done by or against it depends 
only on the starting and ending points of a motion and not on the path 
taken. We can define a potential energy (PE) for any conservative force, 
just as we did for the gravitational force. Potential energy is the energy a 
system has due to position, shape, or configuration. It is stored energy that 
is completely recoverable. A conservative force is one for which work 
done by or against it depends only on the starting and ending points of a 
motion and not on the path taken. We can define a potential energy (PE) 
for any conservative force. The work done against a conservative force to 
reach a final configuration depends on the configuration, not the path 
followed, and is the potential energy added. 

First, let us obtain an expression for the potential energy stored in a 
spring (PEs). We calculate the work done to stretch or compress a spring 
than obeys Hooke’s law. For our spring the amount of deformation 
produced by a force F by the distance x that the spring is stretched or 
compressed along its length. So the force needed to stretch the spring has 
magnitude F = kx, where k is the spring’s force constant. The force 
increases linearly from 0 at the start to kx in the fully stretched position. 



The average force is kx/2, thus the work done in stretching or compressing 
the spring is: 

௦ܹ ൌ ݀ܨ ൌ ൬
ݔ݇
2 ൰ ݔ ൌ

1
ݔ2݇

ଶ. (1.1.34)

We therefore define the potential energy of a spring, PEs, to be 

௦ܧܲ ൌ
1
ݔ2݇

ଶ, (1.1.35)

where k is the spring’s force constant and x is the displacement from its 
undeformed position. The potential energy represents the work done on the 
spring and the energy stored in it as a result of stretching or compressing it 
a distance x. The potential energy of the spring PEs does not depend on the 
path taken, it depends only on the stretch or squeeze x in the final 
configuration. 

Let us now consider what form the work-energy theorem takes when 
only conservative forces are involved. This will lead us to the conservation 
of energy principle. The work-energy theorem states that the net work 
done by all forces acting on a system equals its change in kinetic energy. 
In equation form, this is: 

௡ܹ௘௧ ൌ
1
ݒ2݉

ଶ െ
1
଴ݒ2݉

ଶ ൌ .ܧܭ∆ (1.1.36)

If only conservative forces act, then 

௡ܹ௘௧ ൌ ௖ܹ (1.1.37)

where Wc is the total work done by all conservative forces. Thus, 

௖ܹ ൌ (1.1.38) .ܧܭ∆

Now, if the conservative force, such as the gravitational force or a 
spring force, does work, the system loses potential energy. That is, 
௖ܹ ൌ െ∆ܲܧ. Therefore, 



െ∆ܲܧ ൌ (1.1.39) ,ܧܭ∆
or 

ܧܭ∆ ൅ ܧܲ∆ ൌ 0. (1.1.40)

This equation means that the total kinetic and potential energy is 
constant for any process involving only conservative forces. That is: 

ܧܭ ൅ ܧܲ ൌ constant
or

௜ܧܭ ൅ ௜ܧܲ ൌ ௙ܧܭ ൅ ௙ܧܲ
ൡ conservate force only, (1.1.41)

where i and f denote initial and final values. This equation is a form of the 
work-energy theorem for conservative forces, it is known as the 
conservation of mechanical energy principle. Remember that this applies 
to the extent that all the forces are conservative, so that friction is 
negligible. The total kinetic plus potential energy of a system is defined to 
be its mechanical energy (KE + PE). In a system that experiences only 
conservative forces, there is a potential energy associated with each force, 
and the energy only changes form between KE and the various types of 
PE, with the total energy remaining constant. 

Forces are either conservative or nonconservative. A nonconservative 
force is one for which work depends on the path taken. Friction is a good 
example of a nonconservative force. An important characteristic is that the 
work done by a nonconservative force adds or removes mechanical energy 
from a system. Friction, for example, creates thermal energy that 
dissipates, removing energy from the system. Furthermore, even if the 
thermal energy is retained or captured, it cannot be fully converted back to 
work, so it is lost or not recoverable in that sense as well. 

Friction stops the player by converting his kinetic energy into other 
forms, including thermal energy. In terms of the work-energy theorem, the 
work done by friction, which is negative, is added to the initial kinetic 
energy to reduce it to zero. The work done by friction is negative, 
because f is in the opposite direction of the motion (that is, θ = π, and so 
cosθ = −1). Thus ௡ܹ௖ ൌ െ݂݀. The equation simplifies to 

1
௜ݒ2݉

ଶ െ ݂݀ ൌ 0. (1.1.42)



The fact that energy is conserved and has many forms makes it very 
important. What are some other forms of energy? Let us detail a few here. 
Electrical energy is a common form that is converted to many other forms 
and does work in a wide range of practical situations. Fuels, such as 
gasoline and food, carry chemical energy that can be transferred to a 
system through oxidation. Chemical fuel can also produce electrical 
energy, such as in batteries. Batteries can in turn produce light, which is a 
very pure form of energy. Most energy sources on Earth are in fact stored 
energy from the energy we receive from the Sun. We sometimes refer to 
this as radiant energy, or electromagnetic radiation, which includes visible 
light, infrared, and ultraviolet radiation. Nuclear energy comes from 
processes that convert measurable amounts of mass into energy. Nuclear 
energy is transformed into the energy of sunlight, into electrical energy in 
power plants, and into the energy of the heat transfer and blast in weapons. 
Atoms and molecules inside all objects are in random motion. This internal 
mechanical energy from the random motions is called thermal energy, 
because it is related to the temperature of the object. These and all other 
forms of energy can be converted into one another and can do work. The 
transformation of energy from one form into others is happening all the 
time. The chemical energy in food is converted into thermal energy 
through metabolism; light energy is converted into chemical energy 
through photosynthesis. In a larger example, the chemical energy 
contained in coal is converted into thermal energy as it burns to turn water 
into steam in a boiler. This thermal energy in the steam in turn is converted 
to mechanical energy as it spins a turbine, which is connected to a 
generator to produce electrical energy. In all of these examples, not all of 
the initial energy is converted into the forms mentioned. Another example 
of energy conversion occurs in a solar cell. Sunlight impinging on a solar 
cell produces electricity, which in turn can be used to run an electric 
motor. Energy is converted from the primary source of solar energy into 
electrical energy and then into mechanical energy. 

Even though energy is conserved in an energy conversion process, 
the output of useful energy or work will be less than the energy input. The 
efficiency Eff of an energy conversion process is defined as 

௙௙ܧ ൌ
useful	energy or work output

total	energy input ൌ ௢ܹ௨௧

௜௡ܧ
. (1.1.43)



The Table 2 gives the amount of energy stored, used, or released 
from various objects and in various phenomena. 

Table 2 
Energy of Various Objects and Phenomena 

Object/Phenomenon Energy in Joules 
Big Bang 1068

Energy released in a supernova 1044

Fusion of all the hydrogen in Earth’s oceans 1034

Annual world energy use 4 · 1020

Large fusion bomb (9 megaton) 3.8 · 1016 
One kg uranium (nuclear fission) 8 · 1013

One gallon of gasoline 1.2 · 108 
Daily home electricity use (developed countries) 7 · 107 
One g protein (4.1 kcal) 1.7 · 104 
Tennis ball at 100 km/h 22 
Single electron in a TV tube beam 4 · 1015 
Energy to break one DNA strand 1019

Table 3 lists some efficiencies of mechanical devices and human 
activities. The other 60 % transforms into other (perhaps less useful) 
energy forms, such as thermal energy, which is then released to the 
environment through combustion gases and cooling towers. 

Table 3 
Efficiency of the Human Body and Mechanical Devices 

Activity/Device Efficiently in  % 
Electric motor 98 
Coal power plant 42 
Shoveling 3

Power P – is the rate at which work is done: 

ܲ ൌ
ܹ
ݐ . 

(1.1.44)

The SI unit for power is the watt [W], where 1 watt equals 
1 joule/second [1 W = 1 J/s]. Because work is energy transfer, power is 
also the rate at which energy is expended. A 60-W light bulb, for example, 
expends 60 J of energy per second. Great power means a large amount of 



work or energy developed in a short time. For example, when a powerful 
car accelerates rapidly, it does a large amount of work and consumes a 
large amount of fuel in a short time. Examples of power are limited only 
by the imagination, because there are as many types as there are forms of 
work and energy. See Table 4 for some examples. 

Table 4 
Power Output or Consumption 

Object or Phenomenon Power in Watts 
Supernova at peak 5 · 1037

Milky Way galaxy 1037

The Sun 4 · 1026 
Lightning bolt 2 · 1012 
Clothes dryer 4 · 103 
Heart, person at rest (total useful and heat transfer) 8 
Pocket calculator 103

The scientific definition of linear momentum is consistent with most 
people’s intuitive understanding of momentum: a large, fast-moving object 
has greater momentum than a smaller, slower object. Linear momentum p 
is defined as the product of a system’s mass multiplied by its velocity. In 
symbols, linear momentum is expressed as 

Ԧ݌ ൌ Ԧ, (1.1.45)ݒ݉

Momentum is directly proportional to the object’s mass and also its 
velocity. Thus the greater an object’s mass or the greater its velocity, the 
greater its momentum. Momentum p is a vector having the same direction 
as the velocity v. The SI unit for momentum is [kg · m/s]. The importance 
of momentum, unlike the importance of energy, was recognized early in 
the development of classical physics. Momentum was deemed so 
important that it was called the “quantity of motion”. Newton actually 
stated his second law of motion in terms of momentum: The net 
external force equals the change in momentum of a system divided by the 
time over which it changes. Using symbols, this law is 

௡௘௧ሬሬሬሬሬሬሬԦܨ ൌ
Ԧ݌݀
ݐ݀ , (1.1.46)

where Fnet is the net external force, dp is the change in momentum, and dt 
is the change in time. 



The effect of a force on an object depends on how long it acts, as 
well as how great the force is. Quantitatively, the effect we are talking 
about is the change in momentum dp. Total momentum is conserved for 
any isolated system, with any number of objects in it. In equation form, the 
conservation of momentum principle for an isolated system is written 

௧௢௧݌ ൌ constant, (1.1.47)

where ptot is the total momentum, the sum of the momenta of the 
individual objects in the system. 

An inelastic collision is one in which the internal kinetic energy 
changes (it is not conserved). This lack of conservation means that the 
forces between colliding objects may remove or add internal kinetic 
energy. Work done by internal forces may change the forms of energy 
within a system. For inelastic collisions, such as when colliding objects 
stick together, this internal work may transform some internal kinetic 
energy into heat transfer. Or it may convert stored energy into internal 
kinetic energy, such as when exploding bolts separate a satellite from its 
launch vehicle. 

Statics is the study of forces in equilibrium, a large group of 
situations that makes up a special case of Newton’s second law. The first 
condition necessary to achieve equilibrium is the one already mentioned: 
the net external force on the system must be zero. Expressed as an 
equation, this is simply 

௡௘௧ܨ ൌ 0. (1.1.48)

Note that if net F is zero, then the net external force in any direction 
is zero. The second condition necessary to achieve equilibrium involves 
avoiding accelerated rotation (maintaining a constant angular velocity. 
A rotating body or system can be in equilibrium if its rate of rotation is 
constant and remains unchanged by the forces acting on it. The magnitude, 
direction, and point of application of the force are incorporated into the 
definition of the physical quantity called torque. Torque is the rotational 
equivalent of a force. It is a measure of the effectiveness of a force in 
changing or accelerating a rotation (changing the angular velocity over a 
period of time). In equation form, the magnitude of torque is defined to be 

ܯ ൌ sinθ, (1.1.49)ܨݎ



where M is the symbol for torque, r is the distance from the pivot point to 
the point where the force is applied, F is the magnitude of the force, and θ 
is the angle between the force and the vector directed from the point of 
application to the pivot point, as seen in Fig. 2. 

Fig. 2. Measurement of Torque

Before we can consider the rotation of anything other than a point 
mass, we must extend the idea of rotational inertia to all types of objects. 
To expand our concept of rotational inertia, we define the moment of 
inertia I of an object to be the sum of mr2 for all the point masses of which 
it is composed. That is, ܫ ൌ  ଶ. Here I is analogous to m in translationalݎ݉
motion. Note that I has units of mass multiplied by distance squared 
[kg ⋅ m2], as we might expect from its definition. The general relationship 
among torque, moment of inertia, and angular acceleration is 

ሬሬԦܯ ൌ .εԦܫ (1.1.50)

where M is the total torque from all forces relative to a chosen axis and ε is 
angular acceleration. For simplicity, we will only consider torques exerted 
by forces in the plane of the rotation. Such torques are either positive or 
negative and add like ordinary numbers. The relationship in (1.1.50) I is 
the rotational analog to Newton’s second law and is very generally 
applicable. This equation is actually valid for any torque, applied to any 
object, relative to any axis. 

Work and energy in rotational motion are completely analogous to 
work and energy in translational motion, first presented in Uniform 
Circular Motion and Gravitation. Equation (1.1.51) is the work-energy 
theorem for rotational motion only. As you may recall, network changes 
the kinetic energy of a system. Through an analogy with translational 
motion, we define the term 

ଵ
ଶ
 ωଶ to be rotational kinetic energy KErot forܫ

an object with a moment of inertia I and an angular velocity ω: 

௥௢௧ܧܭ ൌ
1
2 ωܫ

ଶ. (1.1.51)



The expression for rotational kinetic energy is exactly analogous to 
translational kinetic energy, with I being analogous to m and ω to v. 

By now the pattern is clear – every rotational phenomenon has a 
direct translational analog. It seems quite reasonable, then, to define 
angular momentum L as 

ሬԦܮ ൌ ሾݎ,ሬሬԦ  Ԧሿ݌
or 

ሬԦܮ ൌ  ω.ሬሬሬԦܫ
(1.1.52)

This equation is an analog to the definition of linear momentum as p. 
Units for linear momentum are [kg ⋅ m/s] while units for angular 
momentum are [kg ⋅ m2/s]. As we would expect, an object that has a large 
moment of inertia I, such as Earth, has a very large angular momentum. 
An object that has a large angular velocity ω, such as a centrifuge, also has 
a rather large angular momentum. 

1.2. Molecular Physics and Thermodynamics 

Heat is something familiar to each of us. We feel the warmth of the 
summer Sun, the chill of a clear summer night, the heat of coffee after a 
winter stroll, and the cooling effect of our sweat. Heat transfer is 
maintained by temperature differences. Manifestations of heat transfer – 
the movement of heat energy from one place or material to another – are 
apparent throughout the universe. Heat from beneath Earth’s surface is 
brought to the surface in flows of incandescent lava. The Sun warms 
Earth’s surface and is the source of much of the energy we find on it. 
Rising levels of atmospheric carbon dioxide threaten to trap more of the 
Sun’s energy, perhaps fundamentally altering the ecosphere. In space, 
supernovas explode, briefly radiating more heat than an entire galaxy does.  

The concept of temperature has evolved from the common concepts 
of hot and cold. The scientific definition of temperature is less ambiguous 
than your senses of hot and cold. Temperature is operationally defined to 
be what we measure with a thermometer. Many physical quantities are 
defined solely in terms of how they are measured. Any physical property 
that depends on temperature, and whose response to temperature is 
reproducible, can be used as the basis of a thermometer. 



Because many physical properties depend on temperature, the variety 
of thermometers is remarkable. For example, volume increases with 
temperature for most substances. This property is the basis for the common 
alcohol thermometer, the old mercury thermometer, and the bimetallic 
strip other properties used to measure temperature include electrical 
resistance and color. Thermometers are used to measure temperature 
according to well-defined scales of measurement, which use pre-defined 
reference points to help compare quantities. The three most common 
temperature scales are the Fahrenheit, Celsius, and Kelvin scales. 
A temperature scale can be created by identifying two easily reproducible 
temperatures. The freezing and boiling temperatures of water at standard 
atmospheric pressure are commonly used. The Celsius scale (which 
replaced the slightly different centigrade scale) has the freezing point of 
water at 0 ºC and the boiling point at 100 ºC. Its unit is the degree Celsius 
(ºC). On the Fahrenheit scale (still the most frequently used in the United 
States), the freezing point of water is at 32 ºF and the boiling point is at 
212 ºF. The unit of temperature on this scale is the degree Fahrenheit (ºF). 
Note that a temperature difference of one degree Celsius is greater than a 
temperature difference of one degree Fahrenheit. Only 100 Celsius degrees 
span the same range as 180 Fahrenheit degrees, thus one degree on the 
Celsius scale is 1.8 times larger than one degree on the Fahrenheit scale 
180/100 = 9/5. The Kelvin scale is the temperature scale that is commonly 
used in science. It is an absolute temperature scale defined to have 0 K at 
the lowest possible temperature, called absolute zero. The official 
temperature unit on this scale is the kelvin, which is abbreviated K, and is 
not accompanied by a degree sign. The freezing and boiling points of 
water are 273.15 K and 373.15 K, respectively. Thus, the magnitude of 
temperature differences is the same in units of kelvins and degrees Celsius. 
Unlike other temperature scales, the Kelvin scale is an absolute scale. It is 
used extensively in scientific work because a number of physical 
quantities, such as the volume of an ideal gas, are directly related to 
absolute temperature. The kelvin is the SI unit used in scientific work. The 
relationship between the three common temperature scales is shown in 
Fig. 3. Temperatures on these scales can be converted using the equations 
in Table 5. 



Fig. 3. Relationships between the Fahrenheit, Celsius, and Kelvin temperature scales, 
rounded to the nearest degree 

The lowest temperatures ever recorded have been measured during 
laboratory experiments: 4.5 · 10–10 K at the Massachusetts Institute of 
Technology (USA), and 1.0 · 10–10 K at Helsinki University of Technology 
(Finland). In comparison, the coldest recorded place on Earth’s surface is 
Vostok (Russian scientific station) in Antarctica at 183 K (–89 ºC), and the 
coldest place (outside the lab) known in the universe is the Boomerang 
Nebula, with a temperature of 1 K. 

Table 5 
Temperature Conversions 

To convert from Use this equation 
Celsius to Fahrenheit ܶሺԬሻ ൌ

9
5
ܶሺԨሻ ൅ 32 

Fahrenheit to Celsius 
ܶሺԨሻ ൌ

5
9
ሺܶሺԬሻ െ 32ሻ 

Celsius to Kelvin ܶሺܭሻ ൌ ܶሺԨሻ ൅ 273.15 
Kelvin to Celsius ܶሺԨሻ ൌ ܶሺܭሻ െ 273.15 
Fahrenheit to Kelvin 

ܶሺܭሻ ൌ
5
9
ሺܶሺԬሻ െ 32ሻ ൅ 273.15 

Kelvin to Fahrenheit ܶሺԬሻ ൌ
9
5
ሺܶሺܭሻ െ 273.15ሻ ൅ 32 

What is absolute zero? Absolute zero is the temperature at which all 
molecular motion has ceased. The concept of absolute zero arises from the 
behavior of gases. This extrapolation implies that there is a lowest 
temperature. This temperature is called absolute zero. Today we know that 



most gases first liquefy and then freeze, and it is not actually possible to 
reach absolute zero. The numerical value of absolute zero temperature is –
273.15 ºC or 0 K. 

Furthermore, experimentation has shown that if two systems, A and 
B, are in thermal equilibrium with each another, and B is in thermal 
equilibrium with a third system C, then A is also in thermal equilibrium 
with C. This conclusion may seem obvious, because all three have the 
same temperature, but it is basic to thermodynamics. It is called the zeroth 
law of thermodynamics. This law was postulated in the 1930s, after the 
first and second laws of thermodynamics had been developed and named. 
It is called the zeroth law because it comes logically before the first and 
second laws discussed in Thermodynamics. 

What is the underlying cause of thermal expansion? As is discussed 
in Kinetic Theory: Atomic and Molecular Explanation of Pressure and 
Temperature, an increase in temperature implies an increase in the kinetic 
energy of the individual atoms. In a solid, unlike in a gas, the atoms or 
molecules are closely packed together, but their kinetic energy (in the form 
of small, rapid vibrations) pushes neighboring atoms or molecules apart 
from each other. This neighbor-to-neighbor pushing results in a slightly 
greater distance, on average, between neighbors, and adds up to a larger 
size for the whole body. For most substances under ordinary conditions, 
there is no preferred direction, and an increase in temperature will increase 
the solid’s size by a certain fraction in each dimension. The change in 
length ΔL is proportional to length L. The dependence of thermal 
expansion on temperature, substance, and length is summarized in the 
equation 

ܮ∆ ൌ α(1.2.1) ,ܶ∆ܮ

where ΔL is the change in length L, ΔT is the change in temperature, and α 
is the coefficient of linear expansion, which varies slightly with 
temperature. 

At room temperatures, collisions between atoms and molecules can 
be ignored. In this case, the gas is called an ideal gas, in which case the 
relationship between the pressure, volume, and temperature is given by the 
equation of state called the ideal gas law. The ideal gas law states that 

ܸܲ ൌ ܰ݇ܶ, (1.2.2)



where P (pressure is the force divided by the area on which the force is 
exerted) is the absolute pressure of a gas [Pa], V is the volume it occupies 
[m3], N is the number of atoms and molecules in the gas, and T is its 
absolute temperature. The constant k is called the Boltzmann constant in 
honor of Austrian physicist Ludwig Boltzmann (1844–1906) and has the 
value k = 1.38 · 10–23 [J/K]. It is sometimes convenient to work with a unit 
other than molecules when measuring the amount of substance. A mole 
abbreviated [mol] is defined to be the amount of a substance that contains 
as many atoms or molecules as there are atoms in exactly 12 grams 
(0.012 kg) of carbon-12. The actual number of atoms or molecules in one 
mole is called Avogadro’s number (NA), in recognition of Italian scientist 
Amedeo Avogadro (1776–1856). He developed the concept of the mole, 
based on the hypothesis that equal volumes of gas, at the same pressure 
and temperature, contain equal numbers of molecules. That is, the number 
is independent of the type of gas. This hypothesis has been confirmed, and 
the value of Avogadro’s number is NA = 6.02 · 1023 [mol–1]. 

Because a huge number of molecules will collide with the wall in a 
short time, we observe an average force per unit area. These collisions are 
the source of pressure in a gas. As the number of molecules increases, the 
number of collisions and thus the pressure increase. The following 
relationship is found: 

ܸܲ ൌ ଵ
ଷ
ଶതതത, (1.2.3)ݒ݉ܰ

where P is the pressure (average force per unit area), V is the volume of 
gas in the container, N is the number of molecules in the container, m is 
the mass of a molecule, and ݒଶതതത is the average of the molecular speed 
squared. 

We can get the average kinetic energy of a molecule, 
ଵ
ଶ
 ଶ, from theݒ݉

left-hand side of the equation by canceling N and multiplying by 3/2. This 
calculation produces the result that the average kinetic energy of a 
molecule is directly related to absolute temperature: 

തതതതܧܭ ൌ
1
ݒ2݉

ଶതതത ൌ
3
2݇ܶ. 

(1.2.4)



The average translational kinetic energy of a molecule ܧܭതതതത , is called 
thermal energy. And solve for the average speed of molecules in a gas in 
terms of temperature: 

ඥݒଶതതത ൌ ௥௠௦ݒ ൌ ඨ3݇ܶ
݉ , (1.2.5)

where vrms stands for root-mean-square (rms) speed. 
The kinetic theory of gases was developed by Daniel Bernoulli 

(1700–1782), who is best known in physics for his work on fluid flow 
(hydrodynamics). Bernoulli’s work predates the atomistic view of matter 
established by Dalton. The motion of molecules in a gas is random in 
magnitude and direction for individual molecules, but a gas of many 
molecules has a predictable distribution of molecular speeds. This 
distribution is called the Maxwell-Boltzmann distribution, after its 
originators, who calculated it based on kinetic theory, and has since been 
confirmed experimentally (Fig. 4). The distribution has a long tail, because 
a few molecules may go several times the rms speed. The most probable 
speed vp is less than the rms speed vrms.  

Fig. 4. The Maxwell-Boltzmann distribution of molecular speeds in an ideal gas 

Real gases are like ideal gases at high temperatures. At lower 
temperatures, however, the interactions between the molecules and their 
volumes cannot be ignored. The molecules are very close (condensation 



occurs) and there is a dramatic decrease in volume. The plots of pressure 
versus temperatures provide considerable insight into thermal properties of 
substances. There are well-defined regions on these graphs that correspond 
to various phases of matter, so PT-graphs are called phase diagrams. 
Fig. 5 shows the phase diagram for water. 

Fig. 5. The phase diagram (PT-graph) for water 

Using the graph, if you know the pressure and temperature you can 
determine the phase of water. The solid lines–boundaries between phases–
indicate temperatures and pressures at which the phases coexist (that is, 
they exist together in ratios, depending on pressure and temperature). For 
example, the boiling point of water is 100 ºC at 1.00 atm. As the pressure 
increases, the boiling temperature rises steadily to 374 ºC at a pressure of 
218 atm. The curve ends at a point called the critical point, because at 
higher temperatures the liquid phase does not exist at any pressure. The 
critical point occurs at the critical temperature. The critical temperature for 
oxygen (O2) is –118 ºC, so oxygen cannot be liquefied above this 
temperature. All three curves on the phase diagram meet at a single point, 
the triple point, where all three phases exist in equilibrium. For water, the 
triple point occurs at 273.16 K (0.01 ºC), and is a more accurate calibration 
temperature than the melting point of water at 1.00 atm, or 273.15 K 
(0.0 ºC). 

Liquid and gas phases are in equilibrium at the boiling temperature. 
If a substance is in a closed container at the boiling point, then the liquid is 



boiling and the gas is condensing at the same rate without net change in 
their relative amount. Molecules in the liquid escape as a gas at the same 
rate at which gas molecules stick to the liquid, or form droplets and 
become part of the liquid phase. The combination of temperature and 
pressure has to be “just right”; if the temperature and pressure are 
increased, equilibrium is maintained by the same increase of boiling and 
condensation rates. 

Vapor pressure is defined as the pressure at which a gas coexists 
with its solid or liquid phase. Vapor pressure is created by faster molecules 
that break away from the liquid or solid and enter the gas phase. The vapor 
pressure of a substance depends on both the substance and its temperature – 
an increase in temperature increases the vapor pressure. Partial pressure is 
defined as the pressure a gas would create if it occupied the total volume 
available. In a mixture of gases, the total pressure is the sum of partial 
pressures of the component gases, assuming ideal gas behavior and no 
chemical reactions between the components. This law is known as 
Dalton’s law of partial pressures, after the English scientist John Dalton 
(1766–1844), who proposed it. Dalton’s law is based on kinetic theory, 
where each gas creates its pressure by molecular collisions, independent of 
other gases present. It is consistent with the fact that pressures add 
according to Pascal’s Principle. Thus water evaporates and ice sublimates 
when their vapor pressures exceed the partial pressure of water vapor in 
the surrounding mixture of gases. If their vapor pressures are less than the 
partial pressure of water vapor in the surrounding gas, liquid droplets or 
ice crystals (frost) form. 

When we say humidity, we really mean relative humidity. Relative 
humidity tells us how much water vapor is in the air compared with the 
maximum possible. At its maximum, denoted as saturation, the relative 
humidity is 100 %, and evaporation is inhibited. The amount of water 
vapor the air can hold depends on its temperature. At the dew point 
temperature, relative humidity is 100 %, and fog may result from the 
condensation of water droplets if they are small enough to stay in 
suspension. We define percent relative humidity as the ratio of vapor 
density to saturation vapor density, or 

percent	relative	humidity ൌ
vapor density

saturation vapor density ൈ 100. (1.2.6)



We say that a thermal system has a certain internal energy: its 
internal energy is higher if the temperature is higher. If two objects at 
different temperatures are brought in contact with each other, energy is 
transferred from the hotter to the colder object until equilibrium is reached 
and the bodies reach thermal equilibrium (i. e., they are at the same 
temperature). No work is done by either object, because no force acts 
through a distance. The transfer of energy is caused by the temperature 
difference, and ceases once the temperatures are equal. These observations 
lead to the following definition of heat: Heat – is the spontaneous transfer 
of energy due to a temperature difference. Owing to the fact that heat is a 
form of energy, it has the SI unit of joule [J]. The calorie [cal] is a 
common unit of energy, defined as the energy needed to change the 
temperature of 1.00 g of water by 1.00 ºC – specifically, between 14.5 ºC 
and 15.5 ºC, since there is a slight temperature dependence. Perhaps the 
most common unit of heat is the kilocalorie [kcal], which is the energy 
needed to change the temperature of 1.00 kg of water by 1.00 ºC. Since 
mass is most often specified in kilograms, kilocalorie is commonly used. 
Food calories (given the notation Cal, and sometimes called “big calorie”) 
are actually kilocalories (1 kilocalorie = 1000 calories), a fact not easily 
determined from package labeling. It is also possible to change the 
temperature of a substance by doing work. Work can transfer energy into 
or out of a system. This realization helped establish the fact that heat is a 
form of energy. James Prescott Joule (1818–1889) performed many 
experiments to establish the mechanical equivalent of heat – the work 
needed to produce the same effects as heat transfer. In terms of the units 
used for these two terms, the best modern value for this equivalence is 
1.000 [kcal] = 4186 [J]. We consider this equation as the conversion 
between two different units of energy. 

The quantitative relationship between heat transfer and temperature 
change contains all three factors: 

ܳ ൌ ݉ܿ݀ܶ, (1.2.7)

where Q is the symbol for heat transfer, m is the mass of the substance, 
and dT is the change in temperature. The symbol c stands for specific heat 
and depends on the material and phase. The specific heat is the amount of 
heat necessary to change the temperature of 1.00 kg of mass by 1.00 ºC. 
The specific heat c is a property of the substance; its SI unit is [J/(kg · K] 



or [J/kg · ºC]. Recall that the temperature change (dT) is the same in units 
of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, 
then the unit of specific heat is [kcal/kg · ºC]. 

The heat Q required to change the phase of a sample of mass m is 
given by 

ܳ ൌ  ௙ܮ݉
or 

ܳ ൌ  ,௩ܮ݉
(1.2.8)

where the latent heat of fusion, Lf , and latent heat of vaporization, Lv , are 
material constants that are determined experimentally. 

Every process involving heat transfer takes place by only three 
methods:  

I. Conduction is heat transfer through stationary matter by physical 
contact. (The matter is stationary on a macroscopic scale–we know there is 
thermal motion of the atoms and molecules at any temperature above 
absolute zero.) Heat transferred between the electric burner of a stove and 
the bottom of a pan is transferred by conduction. 

II. Convection is the heat transfer by the macroscopic movement of a
fluid. This type of transfer takes place in a forced-air furnace and in 
weather systems, for example. 

III. Heat transfer by radiation occurs when microwaves, infrared
radiation, visible light, or another form of electromagnetic radiation is 
emitted or absorbed. An obvious example is the warming of the Earth by 
the Sun. A less obvious example is thermal radiation from the human 
body. 

Basic physical laws govern how heat transfer for doing work takes 
place and place insurmountable limits onto its efficiency. If we are 
interested in how heat transfer is converted into doing work, then the 
conservation of energy principle is important. The first law of 
thermodynamics applies the conservation of energy principle to systems 
where heat transfer and doing work are the methods of transferring energy 
into and out of the system. The first law of thermodynamics states that the 
change in internal energy of a system equals the net heat transfer into the 
system minus the net work done by the system. In equation form, the first 
law of thermodynamics is: 

ܷ݀ ൌ δܳ െ δܹ. (1.2.9)



Here dU is the change in internal energy U of the system. δQ is the 
net heat transferred into the system – that is, δQ is the sum of all heat 
transfer into and out of the system. δW is the net work done by the 
system – that is, δW is the sum of all work done on or by the system. We 
use the following sign conventions: if δQ is positive, then there is a net 
heat transfer into the system; if W is positive, then there is net work done 
by the system. So positive δQ adds energy to the system and positive δW 
takes energy from the system. Thus (1.2.9) note also that if more heat 
transfer into the system occurs than work done, the difference is stored as 
internal energy. Heat engines are a good example of this – heat transfer 
into them takes place so that they can do work. The first law of 
thermodynamics is actually the law of conservation of energy stated in a 
form most useful in thermodynamics. The first law gives the relationship 
between heat transfer, work done, and the change in internal energy of a 
system. 

A process by which a gas does work on a piston at constant pressure 
is called an isobaric process. Since the pressure is constant, the force 
exerted is constant and the work done is given as: 

ܹ ൌ ܲ∆ܸ. (1.2.10)

Volume is constant, ΔV = 0, and no work is done in an isochoric 
process 

ܹ ൌ 0. (1.2.11)

Isothermal process – that is, one in which temperature is kept 
constant 

ܳ ൌ ܹ. (1.2.12)

An adiabatic process, defined to be one in which there is no heat 
transfer – that is 

ܳ ൌ 0. (1.2.13)

The fact that certain processes never occur suggests that there is a 
law forbidding them to occur. The first law of thermodynamics would 



allow them to occur – none of those processes violate conservation of 
energy. The law that forbids these processes is called the second law of 
thermodynamics. Like all natural laws, the second law of thermodynamics 
gives insights into nature, and its several statements imply that it is broadly 
applicable, fundamentally affecting many apparently disparate processes. 
The already familiar direction of heat transfer from hot to cold is the basis 
of our first version of the second law of thermodynamics: Heat transfer 
occurs spontaneously from higher- to lower-temperature bodies but never 
spontaneously in the reverse direction. The second law of thermodynamics 
also states, with regard to using heat transfer to do work (the second 
expression of the second law): It is impossible in any system for heat 
transfer from a reservoir to completely convert to work in a cyclical 
process in which the system returns to its initial state. Cyclical process 
brings a system, such as the gas in a cylinder, back to its original state at 
the end of every cycle. Most heat engines, such as reciprocating piston 
engines and rotating turbines, use cyclical processes. The second law, just 
stated in its second form, clearly states that such engines cannot have 
perfect conversion of heat transfer into work done. Thus the net work done 
by the system equals the net heat transfer into the system, or 

ܹ ൌ ܳ௛ െ ܳ௖, (1.2.14)

Qh is the heat transfer out of the hot reservoir, W is the work output, and 
Qc is the heat transfer into the cold reservoir. 

We know from the second law of thermodynamics that a heat engine 
cannot be 100 % efficient, since there must always be some heat transfer Qc 
to the environment, which is often called waste heat. How efficient, then, 
can a heat engine be? This question was answered at a theoretical level in 
1824 by a young French engineer, Sadi Carnot (1796–1832), in his study 
of the then-emerging heat engine technology crucial to the Industrial 
Revolution. He devised a theoretical cycle, now called the Carnot cycle, 
which is the most efficient cyclical process possible. The second law of 
thermodynamics can be restated in terms of the Carnot cycle, and so what 
Carnot actually discovered was this fundamental law. Any heat engine 
employing the Carnot cycle is called a Carnot engine. What is crucial to 
the Carnot cycle – and, in fact, defines it – is that only reversible processes 
are used. Irreversible processes involve dissipative factors, such as friction 
and turbulence. This increases heat transfer Qc to the environment and 



reduces the efficiency of the engine. Obviously, then, reversible processes 
are superior. Stated in terms of reversible processes, the second law of 
thermodynamics has a third form: A Carnot engine operating between two 
given temperatures has the greatest possible efficiency of any heat engine 
operating between these two temperatures. Furthermore, all engines 
employing only reversible processes have this same maximum efficiency 
when operating between the same given temperatures. 

Carnot also determined the efficiency of a perfect heat engine–that is, 
a Carnot engine. It is always true that the efficiency of a cyclical heat 
engine is given by: 

௙௙ܧ ൌ
ܳ௛ െ ܳ௖
ܳ௛

ൌ 1 െ
ܳ௖
ܳ௛
. (1.2.15)

The quality of a heat pump is judged by how much heat transfer Qh 
occurs into the warm space compared with how much work input W is 
required. In the spirit of taking the ratio of what you get to what you 
spend, we define a heat pump’s coefficient of performance (COPhp) to be 

ܱܥ ௛ܲ௣ ൌ
ܳ௛
ܹ. (1.2.16)

There is yet another way of expressing the second law of 
thermodynamics. This version relates to a concept called entropy. The 
entropy of a system can in fact be shown to be a measure of its disorder 
and of the unavailability of energy to do work. Entropy is a measure of 
how much energy is not available to do work. Although all forms of 
energy are interconvertible, and all can be used to do work, it is not always 
possible, even in principle, to convert the entire available energy into 
work. That unavailable energy is of interest in thermodynamics, because 
the field of thermodynamics arose from efforts to convert heat to work. 
This ratio of Q/T is defined to be the change in entropy dS for a reversible 
process 

݀ܵ ൌ
݀ܳ
ܶ
, (1.2.17)

where dQ is the heat transfer, which is positive for heat transfer into and 
negative for heat transfer out of, and T is the absolute temperature at which 



the reversible process takes place. The SI unit for entropy is joules per 
kelvin [J/K]. If temperature changes during the process, then it is usually a 
good approximation (for small changes in temperature) to take T to be the 
average temperature, avoiding the need to use integral calculus to find dS. 
It is reasonable that entropy increases for heat transfer from hot to cold. 
Since the change in entropy is dQ/T, there is a larger change at lower 
temperatures. The decrease in entropy of the hot object is therefore less 
than the increase in entropy of the cold object, producing an overall 
increase. This result is very general: There is an increase in entropy for any 
system undergoing an irreversible process. With respect to entropy, there 
are only two possibilities: entropy is constant for a reversible process, and 
it increases for an irreversible process. There is a fourth version of the 
second law of thermodynamics stated in terms of entropy: The total 
entropy of a system either increases or remains constant in any process; it 
never decreases. 

1.3. Electricity and Magnetism 

Atomic and molecular interactions, such as the forces of friction, 
cohesion, and adhesion, are now known to be manifestations of the 
electromagnetic force. Static electricity is just one aspect of the 
electromagnetic force, which also includes moving electricity and 
magnetism. All the macroscopic forces that we experience directly, such as 
the sensations of touch and the tension in a rope, are due to the 
electromagnetic force, one of the four fundamental forces in nature. The 
gravitational force, another fundamental force, is actually sensed through 
the electromagnetic interaction of molecules, such as between those in our 
feet and those on the top of a bathroom scale. The other two fundamental 
forces, the strong nuclear force and the weak nuclear force, cannot be 
sensed on the human scale. Some of the most basic characteristics of static 
electricity include: 

 The effects of static electricity are explained by a physical
quantity not previously introduced, called electric charge. 

 There are only two types of charge, one called positive and the
other called negative. 

 Like charges repel, whereas unlike charges attract.
 The force between charges decreases with distance.



Fig. 6 shows a simple model of an atom with negative electrons 
orbiting its positive nucleus. The nucleus is positive due to the presence of 
positively charged protons. Nearly all charge in nature is due to electrons 
and protons, which are two of the three building blocks of most matter. 
The third is the neutron, which is neutral, carrying no charge. Other 
charge-carrying particles are observed in cosmic rays and nuclear decay, 
and are created in particle accelerators. All but the electron and proton 
survive only a short time and are quite rare by comparison. 

Fig. 6. The effects of static electricity are explained by a physical quantity not 
previously introduced, called electric charge 

The charges of electrons and protons are identical in magnitude but 
opposite in sign. Furthermore, all charged objects in nature are integral 
multiples of this basic quantity of charge, meaning that all charges are 
made of combinations of a basic unit of charge. Usually, charges are 
formed by combinations of electrons and protons. The magnitude of this 
basic charge is 

|௘ݍ| ൌ 1.602176487 ∙ 10ିଵଽሾܥሿ. (1.3.1)

The symbol q is commonly used for charge and the subscript e 
indicates the charge of a single electron (or proton). The SI unit of charge 
is the coulomb [C]. In fact, in all situations the total amount of charge is 
always constant. This universally obeyed law of nature is called the law of 
conservation of charge: total charge is constant in any process. Only a 
limited number of physical quantities are universally conserved. Charge is 
one – energy, momentum, and angular momentum are others. Because 
they are conserved, these physical quantities are used to explain more 



phenomena and form more connections than other, less basic quantities. 
We find that conserved quantities give us great insight into the rules 
followed by nature and hints to the organization of nature. Discoveries of 
conservation laws have led to further discoveries, such as the weak nuclear 
force and the quark substructure of protons and other particles. 

Some substances, such as metals and salty water, allow charges to 
move through them with relative ease. Some of the electrons in metals and 
similar conductors are not bound to individual atoms or sites in the 
material. These free electrons can move through the material much as air 
moves through loose sand. Any substance that has free electrons and 
allows charge to move relatively freely through it is called a conductor. 
The moving electrons may collide with fixed atoms and molecules, losing 
some energy, but they can move in a conductor. Superconductors allow the 
movement of charge without any loss of energy. Salty water and other 
similar conducting materials contain free ions that can move through them. 
An ion is an atom or molecule having a positive or negative (nonzero) total 
charge. In other words, the total number of electrons is not equal to the 
total number of protons. 

Through the work of scientists in the late 18th century, the main 
features of the electrostatic force – the existence of two types of charge, 
the observation that like charges repel, unlike charges attract, and the 
decrease of force with distance – were eventually refined, and expressed as 
a mathematical formula. The mathematical formula for the electrostatic 
force is called Coulomb’s law after the French physicist Charles Coulomb 
(1736–1806), who performed experiments and first proposed a formula to 
calculate it. 

ܨ ൌ ݇
|ଶݍଵݍ|
ଶݎ . (1.3.2)

Coulomb’s law calculates the magnitude of the force F between two 
point charges, q1 and q2, separated by a distance r. In SI units, the constant 
k is equal to 

݇ ൎ 8.99 ∙ 10ଽ ሾܰ ∙ ݉ଶ ∙ ଶሿ. (1.3.3)ିܥ

The electrostatic force is a vector quantity and is expressed in units 
of newtons. The force is understood to be along the line joining the two 



charges. A field is a way of conceptualizing and mapping the force that 
surrounds any object and acts on another object at a distance without 
apparent physical connection. For example, the gravitational field 
surrounding the earth (and all other masses) represents the gravitational 
force that would be experienced if another mass were placed at a given 
point within the field. In the same way, the Coulomb force field 
surrounding any charge extends throughout space. Using Coulomb’s law, 
its magnitude is given by the equation ܨ ൌ ݇ |ܳݍ| ⁄ଶݎ , for a point charge 
(a particle having a charge Q) acting on a test charge q at a distance r. 
Both the magnitude and direction of the Coulomb force field depend 
on Q and the test charge q. 

To simplify things, we would prefer to have a field that depends only 
on Q and not on the test charge q. The electric field is defined in such a 
manner that it represents only the charge creating it and is unique at every 
point in space. Specifically, the electric field E is defined to be the ratio of 
the Coulomb force to the test charge: 

ܧ ൌ
ܨ
(1.3.4) ,ݍ

where F is the electrostatic force (or Coulomb force) exerted on a positive 
test charge q. It is understood that E is in the same direction as F. It is also 
assumed that q is so small that it does not alter the charge distribution 
creating the electric field. The units of electric field are newtons per 
coulomb [N/C]. If the electric field is known, then the electrostatic force 
on any charge q is simply obtained by multiplying charge times electric 
field, or ܨ ൌ  .Consider the electric field due to a point charge Q .ܧݍ
According to Coulomb’s law, the force it exerts on a test charge q is 
ܨ ൌ ݇ |ܳݍ| ⁄ଶݎ . Thus the magnitude of the electric field E, for a point 
charge is 

ܧ ൌ ฬ
ܨ
ฬݍ ൌ ݇ ฬ

ܳݍ
ଶฬݎݍ ൌ ݇ ฬ

ܳ
 .ଶฬݎ

(1.3.5)

The electric field is thus seen to depend only on the charge Q and the 
distance r; it is completely independent of the test charge q. Drawings 
using lines to represent electric fields around charged objects are very 
useful in visualizing field strength and direction. Since the electric field 



has both magnitude and direction, it is a vector. Like all vectors, the 
electric field can be represented by an arrow that has length proportional to 
its magnitude and that point in the correct direction. Fig. 7 shows two 
pictorial representations of the same electric field created by a positive 
point charge Q. Fig. 7, b shows the standard representation using 
continuous lines. Fig. 7, a shows numerous individual arrows with each 
arrow representing the force on a test charge q. Field lines are essentially a 
map of infinitesimal force vectors. 

Fig. 7. Two equivalent representations of the electric field due to a positive charge Q: 
a – arrows representing the electric field’s magnitude and direction;  

b – in the standard representation, the arrows are replaced by continuous field lines 
having the same direction at any point as the electric field 

We use electric field lines to visualize and analyze electric fields 
(the lines are a pictorial tool, not a physical entity in themselves). The 
properties of electric field lines for any charge distribution can be 
summarized as follows: 

1. Field lines must begin on positive charges and terminate on
negative charges, or at infinity in the hypothetical case of isolated charges. 

2. The number of field lines leaving a positive charge or entering a
negative charge is proportional to the magnitude of the charge. 

3. The strength of the field is proportional to the closeness of the
field lines – more precisely, it is proportional to the number of lines per 
unit area perpendicular to the lines. 

4. The direction of the electric field is tangent to the field line at any
point in space. 

5. Field lines can never cross.



The last property means that the field is unique at any point. The 
field line represents the direction of the field; so if they crossed, the field 
would have two directions at that location (an impossibility if the field is 
unique). 

Conductors contain free charges that move easily. When excess 
charge is placed on a conductor or the conductor is put into a static electric 
field, charges in the conductor quickly respond to reach a steady state 
called electrostatic equilibrium. A conductor placed in an electric field 
will be polarized. Properties of a Conductor in Electrostatic Equilibrium: 

1. The electric field is zero inside a conductor.
2. Just outside a conductor, the electric field lines are perpendicular

to its surface, ending or beginning on charges on the surface. 
3. Any excess charge resides entirely on the surface or surfaces of a

conductor. 
The study of electrostatics has proven useful in many areas. Van de 

Graaff generators (or Van de Graaffs) are not only spectacular devices 
used to demonstrate high voltage due to static electricity – they are also 
used for serious research. The first was built by Robert Van de Graaff in 
1931 (based on original suggestions by Lord Kelvin) for use in nuclear 
physics research. Van de Graaffs utilize both smooth and pointed surfaces, 
and conductors and insulators to generate large static charges and, hence, 
large voltages. Two of the most familiar aspects of electricity are its 
energy and voltage. We know, for example, that great amounts of 
electrical energy can be stored in batteries, are transmitted cross-country 
through power lines, and may jump from clouds to explode the sap of 
trees. In a similar manner, at molecular levels, ions cross cell membranes 
and transfer information. We also know about voltages associated with 
electricity. Batteries are typically a few volts, the outlets in your home 
produce 120 volts, and power lines can be as high as hundreds of 
thousands of volts. But energy and voltage are not the same thing. We use 
the letters PE to denote electric potential energy, which has units of 
joules [J]. The change in potential energy, ΔPE, is crucial, since the work 
done by a conservative force is the negative of the change in potential 
energy; that is, W = –ΔPE. For example, work W done to accelerate a 
positive charge from rest is positive and results from a loss in PE,  
or a negative ΔPE. There must be a minus sign in front of ΔPE to make 
W positive. PE can be found at any point by taking one point as a reference 
and calculating the work needed to move a charge to the other point. 



Gravitational potential energy and electric potential energy are quite 
analogous. Potential energy accounts for work done by a conservative 
force and gives added insight regarding energy and energy transformation 
without the necessity of dealing with the force directly. It is much more 
common, for example, to use the concept of voltage (related to electric 
potential energy) than to deal with the Coulomb force directly. Calculating 
the work directly is generally difficult, since ܹ ൌ ݀ܨ cos θ and the 
direction and magnitude of F can be complex for multiple charges, for 
odd-shaped objects, and along arbitrary paths. But we do know that, since 
ܨ ൌ  the work, and hence ΔPE, is proportional to the test charge q. To ,ܧݍ
have a physical quantity that is independent of test charge, we define 
electric potential V (or simply potential, since electric is understood) to be 
the potential energy per unit charge: 

ܸ ൌ
ܧܲ
ݍ
. (1.3.6)

The potential difference between points 1 and 2, ଶܸ െ ଵܸ, is thus de- 
fined to be the change in potential energy of a charge q moved from 1 to 2, 
divided by the charge. Units of potential difference are joules per coulomb, 
given the name volt [V] after Alessandro Volta. The familiar term voltage 
is the common name for potential difference. Keep in mind that whenever 
a voltage is quoted, it is understood to be the potential difference between 
two points. For example, every battery has two terminals, and its voltage is 
the potential difference between them. More fundamentally, the point you 
choose to be zero volts is arbitrary. This is analogous to the fact that 
gravitational potential energy has an arbitrary zero, such as sea level or 
perhaps a lecture hall floor. 

On the submicroscopic scale, it is more convenient to define an 
energy unit called the electron volt [eV], which is the energy given to a 
fundamental charge accelerated through a potential difference of 1 V. In 
equation form, 

1ܸ݁ ൌ 1.602176634 ∙ 10ିଵଽሾJሿ. (1.3.7)

Point charges, such as electrons, are among the fundamental building 
blocks of matter. Furthermore, spherical charge distributions (like on a 
metal sphere) create external electric fields exactly like a point charge. The 



electric potential due to a point charge is, thus, a case we need to consider. 
Using calculus to find the work needed to move a test charge q from a 
large distance away to a distance of r from a point charge Q, and noting the 
connection between work and potential, it can be shown that the electric 
potential V of a point charge is 

ܸ ൌ ௞ொ
௥
	ሺPoint Chargeሻ. (1.3.8)

We can represent electric potentials (voltages) pictorially, just as we 
drew pictures to illustrate electric fields. Of course, the two are related. 

A capacitor is a device used to store electric charge. Capacitors have 
applications ranging from filtering static out of radio reception to energy 
storage in heart defibrillators. Typically, commercial capacitors have two 
conducting parts close to one another, but not touching. When battery 
terminals are connected to an initially uncharged capacitor, equal amounts 
of positive and negative charge, +Q and –Q, are separated into its two 
plates. The capacitor remains neutral overall, but we refer to it as storing a 
charge Q in this circumstance. The amount of charge Q a capacitor can 
store depends on two major factors – the voltage applied and the 
capacitor’s physical characteristics, such as its size. Different capacitors 
will store different amounts of charge for the same applied voltage, 
depending on their physical characteristics. We define their capacitance C 
to be such that the charge Q stored in a capacitor is proportional to C. The 
charge stored in a capacitor is given by 

ܳ ൌ (1.3.9) .ܸܥ

The unit of capacitance is the farad [F], named for Michael Faraday 
(1791–1867), an English scientist who contributed to the fields of 
electromagnetism and electrochemistry. Since capacitance is charge per 
unit voltage, we see that a farad is a coulomb per volt, or [1 F = 1 C/1V]. It 
can be shown that for a parallel plate capacitor there are only two factors 
(A and d) that affect its capacitance C. The capacitance of a parallel plate 
capacitor in equation form is given by 

ܥ ൌ ε଴
ܣ
݀. (1.3.10)



The previous example highlights the difficulty of storing a large 
amount of charge in capacitors. If d is made smaller to produce a larger 
capacitance, then the maximum voltage must be reduced proportionally to 
avoid breakdown. An important solution to this difficulty is to put an 
insulating material, called a dielectric, between the plates of a capacitor 
and allow d to be as small as possible. Not only does the smaller d make 
the capacitance greater, but many insulators can withstand greater electric 
fields than air before breaking down. There is another benefit to using a 
dielectric in a capacitor. Depending on the material used, the capacitance 
is greater than that given by the equation (1.3.10) by a factor ε, called the 
dielectric constant. A parallel plate capacitor with a dielectric between its 
plates has a capacitance given by 

ܥ ൌ εε଴
ܣ
݀. (1.3.11)

Values of the dielectric constant ε for various materials are given in 
Table 6. Note that ε for vacuum is exactly 1, and so the above equation is 
valid in that case, too. 

Table 6 
Dielectric Constants and Dielectric Strengths for Various Materials at 20 ºC 

Vacuum 1.00000 –
Air 1.00059 3 · 106

Paper 3.7 16 · 106 
Pyrex Glass 5.6 14 · 106 
Teflon 2.1 60 · 106 
Water 80 –

Total capacitance in series, Cs

1
௦ܥ
ൌ
1
ଵܥ
൅
1
ଶܥ
൅⋯ (1.3.12)

Total capacitance in parallel, Cp 

௣ܥ ൌ ଵܥ ൅ ଶܥ ൅ ଷܥ ൅⋯ (1.3.13)



The energy stored in a capacitor can be expressed in three ways: 

௖௔௣ܧ ൌ
ܸܳ
2 ൌ

ଶܸܥ

2 ൌ
ܳଶ

 ,ܥ2
(1.3.14)

where Q is the charge, V is the voltage, and C is the capacitance of the 
capacitor. The energy is in joules for a charge in coulombs, voltage in 
volts, and capacitance in farads. 

Electric current is defined to be the rate at which charge flows. 
A large current, such as that used to start a truck engine, moves a large 
amount of charge in a small time, whereas a small current, such as that 
used to operate a hand-held calculator, moves a small amount of charge 
over a long period of time. In equation form, electric current I is defined to 
be 

ܫ ൌ
݀ܳ
ݐ݀ , 

(1.3.15)

where dQ is the amount of charge passing through a given area in time dt. 
The SI unit for current is the ampere [A], named for the French physicist 
André-Marie Ampère (1775–1836). Since (1.3.15), we see that an ampere 
is one coulomb per second [1 A = 1 C/1s]. 

The current that flows through most substances is directly 
proportional to the voltage V applied to it. The German physicist Georg 
Simon Ohm (1787–1854) was the first to demonstrate experimentally that 
the current in a metal wire is directly proportional to the voltage applied. 
This important relationship is known as Ohm’s law. It can be viewed as a 
cause-and-effect relationship, with voltage the cause and current the effect. 
This is an empirical law like that for friction – an experimentally observed 
phenomenon. Such a linear relationship doesn’t always occur. The electric 
property that impedes current (crudely similar to friction and air 
resistance) is called resistance R. Collisions of moving charges with atoms 
and molecules in a substance transfer energy to the substance and limit 
current. Resistance is defined as inversely proportional to current, or 

ܫ ൌ
ܸ
ܴ
. (1.3.16)



The many substances for which Ohm’s law holds are called ohmic. 
These include good conductors like copper and aluminum, and some poor 
conductors under certain circumstances. Ohmic materials have a resistance 
R that is independent of voltage V and current I. An object that has simple 
resistance is called a resistor, even if its resistance is small. The unit for 
resistance is an ohm and is given the symbol Ω (upper case Greek omega). 

The resistance of an object depends on its shape and the material of 
which it is composed. The cylindrical resistor in Fig. 8 is easy to analyze, 
and, by so doing, we can gain insight into the resistance of more 
complicated shapes. As you might expect, the cylinder’s electric resistance 
R is directly proportional to its length L, similar to the resistance of a pipe 
to fluid flow. The longer the cylinder, the more collisions charges will 
make with its atoms. The greater the diameter of the cylinder, the more 
current it can carry. In fact, R is inversely proportional to the cylinder’s 
cross-sectional area A: 

Fig. 8. A uniform cylinder of length L and cross-sectional area A. Its resistance to the 
flow of current is similar to the resistance posed by a pipe to fluid flow 

For a given shape, the resistance depends on the material of which 
the object is composed. Different materials offer different resistance to the 
flow of charge. We define the resistivity ρ of a substance so that the 
resistance R of an object is directly proportional to ρ. Resistivity ρ is an 
intrinsic property of a material, independent of its shape or size. The 
resistance R of a uniform cylinder of length L, of cross-sectional area A, 
and made of a material with resistivity ρ, is 

ܴ ൌ
ρܮ
ܣ
. (1.3.17)

Table 7 gives representative values of ρ. 



Table 7 
Resistivities ρ of various materials at 20 ºC 

Material ρ [Ω · m] 
Silver 1.59 · 10-8

Cooper 1.79 · 10-8 
Gold 2.44 · 10-8 
Glass 109 – 1014

Wood 108 – 1011 

The resistivity of all materials depends on temperature. Some even 
become superconductors (zero resistivity) at very low temperatures. 
Conversely, the resistivity of conductors increases with increasing 
temperature. Since the atoms vibrate more rapidly and over larger 
distances at higher temperatures, the electrons moving through a metal 
make more collisions, effectively making the resistivity higher. Over 
relatively small temperature changes (about 100 ºC or less), resistivity ρ 
varies with temperature change ΔT as expressed in the following equation 

ρ ൌ ρ଴ሺ1 ൅ αΔܶሻ, (1.3.18)

where ρ0 is the original resistivity and α is the temperature coefficient of 
resistivity. For larger temperature changes, α may vary or a nonlinear 
equation may be needed to find ρ. Note that α is positive for metals, 
meaning their resistivity increases with temperature. Some alloys have 
been developed specifically to have a small temperature dependence. 

Electric energy depends on both the voltage involved and the charge 
moved. This is expressed most simply as ܲܧ ൌ  where q is the charge ,ܸݍ
moved and V is the voltage (or more precisely, the potential difference the 
charge moves through). Power is the rate at which energy is moved, and so 
electric power is 

ܲ ൌ
ܧܲ
ݐ ൌ

ܸݍ
ݐ . 

(1.3.19)

Electric power P is simply the product of current times voltage. 
Power has familiar units of watts. Since the SI unit for potential energy PE 
is the joule, power has units of joules per second, or watts. Thus, 
[1A ⋅ V = 1 W]. Three expressions for electric power are listed together 
here for convenience 

ܲ ൌ ܸܫ ൌ
ܸଶ

ܴ ൌ ଶܴ. (1.3.20)ܫ



Most of the examples dealt with so far, and particularly those 
utilizing batteries, have constant voltage sources. Once the current is 
established, it is thus also a constant. Direct current (DC) is the flow of 
electric charge in only one direction. It is the steady state of a constant-
voltage circuit. Most well-known applications, however, use a time-
varying voltage source. Alternating current (AC) is the flow of electric 
charge that periodically reverses direction. If the source varies 
periodically, particularly sinusoidally, the circuit is known as an 
alternating current circuit. Examples include the commercial and 
residential power that serves so many of our needs. Fig. 9 shows graphs of 
voltage and current versus time for typical DC and AC power. The AC 
voltages and frequencies commonly used in homes and businesses vary 
around the world. 

Fig. 9. a – DC voltage and current are constant in time, once the current is 
established; b – a graph of voltage and current versus time for 60-Hz AC power.  

The voltage and current are sinusoidal and are in phase for a simple resistance circuit. 
The frequencies and peak voltages of AC sources differ greatly 

Most circuits have more than one component, called a resistor that 
limits the flow of charge in the circuit. A measure of this limit on charge 
flow is called resistance. The simplest combinations of resistors are the 
series and parallel connections illustrated in Fig. 10. The total resistance of 



a combination of resistors depends on both their individual values and how 
they are connected. 

Fig. 10. a – a series connection of resistors; b – a parallel connection of resistors 

This implies that the total or equivalent series resistance Rs of four 
resistors is ܴௌ ൌ ܴଵ ൅ ܴଶ ൅ ܴଷ ൅ ܴସ. This logic is valid in general for any 
number of resistors in series; thus, the total resistance Rs of a series 
connection is 

ܴௌ ൌ ܴଵ ൅ ܴଶ ൅ ܴଷ ൅⋯, (1.3.21)

as proposed. Since all of the current must pass through each resistor, it 
experiences the resistance of each, and resistances in series simply add up. 

The total resistance Rp of a parallel connection is related to the 
individual resistances by 

1
ܴ௣

ൌ
1
ܴଵ

൅
1
ܴଶ

൅
1
ܴଷ

൅⋯ (1.3.22)

This relationship results in a total resistance Rp that is less than the 
smallest of the individual resistances. 

Many complex circuits, such as the one in Fig. 11, cannot be 
analyzed with the series-parallel techniques developed. There are, 
however, two circuit analysis rules that can be used to analyze any circuit, 



simple or complex. These rules are special cases of the laws of 
conservation of charge and conservation of energy. The rules are known as 
Kirchhoff’s rules, after their inventor Gustav Kirchhoff (1824–1887). 

Fig. 11. Complex circuits. Note: the script E in the figure represents  
electromotive force, emf 

 Kirchhoff’s first rule – the junction rule. The sum of all currents
entering a junction must equal the sum of all currents leaving the junction. 

 Kirchhoff’s second rule – the loop rule. The algebraic sum of
changes in potential around any closed circuit path (loop) must be zero. 

Another important part of the electromagnetism is magnetism. 
All magnets attract iron, such as that in a refrigerator door. However, 
magnets may attract or repel other magnets. Experimentation shows that 
all magnets have two poles. If freely suspended, one pole will point toward 
the north. The two poles are thus named the north magnetic pole and the 
south magnetic pole (or more properly, north-seeking and south-seeking 
poles, for the attractions in those directions). The Earth acts like a very 
large bar magnet with its south-seeking pole near the geographic North 
Pole. That is why the north pole of your compass is attracted toward the 
geographic north pole of the Earth – because the magnetic pole that is near 
the geographic North Pole is actually a south magnetic pole! Confusion 
arises because the geographic term “North Pole” has come to be used 
(incorrectly) for the magnetic pole that is near the North Pole. Thus, 
“North magnetic pole” is actually a misnomer – it should be called the 
South magnetic pole. 



Only certain materials, such as iron, cobalt, nickel, and gadolinium, 
exhibit strong magnetic effects. Such materials are called ferromagnetic, 
after the Latin word for iron, ferrum. A group of materials made from the 
alloys of the rare earth elements are also used as strong and permanent 
magnets; a popular one is neodymium. Other materials exhibit weak 
magnetic effects, which are detectable only with sensitive instruments. Not 
only do ferromagnetic materials respond strongly to magnets (the way iron 
is attracted to magnets), they can also be magnetized themselves – that is, 
they can be induced to be magnetic or made into permanent magnets. 

Early in the 19th century, it was discovered that electrical currents 
cause magnetic effects. The first significant observation was by the Danish 
scientist Hans Christian Oersted (1777–1851), who found that a compass 
needle was deflected by a current-carrying wire. This was the first 
significant evidence that the movement of charges had any connection 
with magnets. Electromagnetism is the use of electric current to make 
magnets. These temporarily induced magnets are called electromagnets. 

Since magnetic forces act at a distance, we define a magnetic field to 
represent magnetic forces. The pictorial representation of magnetic field 
lines is very useful in visualizing the strength and direction of the magnetic 
field. As shown in Fig. 12, the direction of magnetic field lines is defined 
to be the direction in which the north end of a compass needle points. The 
magnetic field is traditionally called the B-field. 

Fig. 12. Magnetic field lines 

The magnetic force on a moving charge is one of the most 
fundamental known. Magnetic force is as important as the electrostatic or 
Coulomb force. Yet the magnetic force is more complex, in both the 
number of factors that affects it and in its direction, than the relatively 
simple Coulomb force. The magnitude of the magnetic force F on a charge 
q moving at a speed v in a magnetic field of strength B is given by 



ܨ ൌ ܤݒݍ sin θ, (1.3.23)

where θ is the angle between the directions of v and B. This force is often 
called the Lorentz force. In fact, this is how we define the magnetic field 
strength B – in terms of the force on a charged particle moving in a mag- 
netic field. The SI unit for magnetic field strength B is called the tesla [T] 
after the eccentric but brilliant inventor Nikola Tesla (1856–1943). To 
determine how the tesla relates to other SI units, we solve (1.2.23) for B. 
The direction of the magnetic force F is perpendicular to the plane formed 
by v and B, as determined by the right hand rule 1 (or RHR-1), which is 
illustrated in Fig. 13. RHR-1 states that, to determine the direction of the 
magnetic force on a positive moving charge, you point the thumb of the 
right hand in the direction of v, the fingers in the direction of B, and a 
perpendicular to the palm points in the direction of F. One way to 
remember this is that there is one velocity, and so the thumb represents it. 
There are many field lines, and so the fingers represent them. The force is 
in the direction you would push with your palm. The force on a negative 
charge is in exactly the opposite direction to that on a positive charge. 

Fig. 13. The direction of the magnetic force on a moving charge is perpendicular to 
the plane formed by v and B and follows right hand rule 1 

Magnetic force can cause a charged particle to move in a circular or 
spiral path. Cosmic rays are energetic charged particles in outer space, 
some of which approach the Earth. They can be forced into spiral paths by 
the Earth’s magnetic field. Protons in giant accelerators are kept in a 
circular path by magnetic force. Because the magnetic force F supplies the 
centripetal force Fc, we have 



ܤݒݍ ൌ
ଶݒ݉

ݎ , (1.3.24)

where r is the radius of curvature of the path of a charged particle with 
mass m and charge q, moving at a speed v perpendicular to a magnetic 
field of strength B. If the velocity is not perpendicular to the magnetic 
field, then v is the component of the velocity perpendicular to the field. 
The component of the velocity parallel to the field is unaffected, since the 
magnetic force is zero for motion parallel to the field. This produces a 
spiral motion rather than a circular one. 

We have seen effects of a magnetic field on free-moving charges. 
The magnetic field also affects charges moving in a conductor. One result 
is the Hall effect, which has important implications and applications. 
Moving electrons feel a magnetic force toward one side of the conductor, 
leaving a net positive charge on the other side. This separation of charge 
creates a voltage Θ, known as the Hall emf, across the conductor. The 
creation of a voltage across a current-carrying conductor by a magnetic 
field is known as the Hall effect, after Edwin Hall, the American physicist 
who discovered it in 1879. To examine these quantitatively, we need an 
expression for the Hall emf, Θ, across a conductor. Consider the balance of 
forces on a moving charge in a situation where B, v, and l are mutually 
perpendicular. Although the magnetic force moves negative charges to one 
side, they cannot build up without limit. The electric field caused by their 
separation opposes the magnetic force, (1.3.23), and the electric force, 
௘ܨ ൌ  ,eventually grows to equal it. That is ,ܧݍ

ܧݍ ൌ ܧ or ܤݒݍ ൌ (1.3.25) .ܤݒ

Note that the electric field E is uniform across the conductor because 
the magnetic field B is uniform, as is the conductor. For a uniform electric 
field, the relationship between electric field and voltage is ܧ ൌ Θ ݈,⁄  where 
l is the width of the conductor and ε is the Hall emf. Entering this into the 
last expression gives 

Θ
݈ ൌ (1.3.26) ,ܤݒ

where Θ is the Hall effect voltage across a conductor of width l through 
which charges move at a speed v. 



Because charges ordinarily cannot escape a conductor, the magnetic 
force on charges moving in a conductor is transmitted to the conductor 
itself. We can derive an expression for the magnetic force on a current by 
taking a sum of the magnetic forces on individual charges. The forces add 
because they are in the same direction. The force on an individual charge 
moving at the drift velocity vd is given by (1.3.23). Taking B to be uniform 
over a length of wire l and zero elsewhere, the total magnetic force on the 
wire is then ܨ ൌ ሺݒݍௗܤ sin θሻሺܰሻ, where N is the number of charge 
carriers in the section of wire of length l. Now, ܰ ൌ ܸ݊, where n is the 
number of charge carriers per unit volume and V is the volume of wire in 
the field. Noting that ܸ ൌ  where A is the cross-sectional area of the ,݈ܣ
wire, then the force on the wire is ܨ ൌ ሺݒݍௗܤ sin θሻሺ݈݊ܣሻ. Gathering 
terms, 

ܨ ൌ ܤ݈ܫ sin θ, (1.3.27)

is the equation for magnetic force on a length l of wire carrying a current I 
in a uniform magnetic field B. 

Magnetic fields have both direction and magnitude. As noted before, 
one way to explore the direction of a magnetic field is with compasses, as 
shown for a long straight current-carrying wire in Fig. 14. Hall probes can 
determine the magnitude of the field. The field around a long straight wire 
is found to be in circular loops. The right hand rule 2 (RHR-2) emerges 
from this exploration and is valid for any current segment – point the 
thumb in the direction of the current, and the fingers curl in the direction 
of the magnetic field loops created by it. 

The magnetic field strength (magnitude) produced by a long straight 
current-carrying wire is found by experiment to be 

ܤ ൌ
μ଴ܫ
2πݎ	

ሺlong straight wireሻ, (1.3.28)

where I is the current, r is the shortest distance to the wire, and the 
constant μ0 = 4π · 10−7 [T ⋅ m/A] is the permeability of free space. (μ0 is 
one of the basic constants in nature. Since the wire is very long, the 
magnitude of the field depends only on distance from the wire r, not on 
position along the wire. 



Fig. 14. a – compasses placed near a long straight current-carrying wire indicate that 
field lines form circular loops centered on the wire; b – right hand rule 2 states 

A solenoid is a long coil of wire (with many turns or loops, as 
opposed to a flat loop). Because of its shape, the field inside a solenoid can 
be very uniform, and also very strong. The field just outside the coils is 
nearly zero. The magnetic field inside of a current-carrying solenoid is 
very uniform in direction and magnitude. Only near the ends does it begin 
to weaken and change direction. The field outside has similar complexities 
to flat loops and bar magnets, but the magnetic field strength inside a 
solenoid is simply 

ܤ ൌ μ଴݊ܫ	ሺinside a solenoidሻ, (1.3.29)

where n is the number of loops per unit length of the solenoid ݊ ൌ ܰ ݈,⁄  
with N being the number of loops and l the length. Note that B is the field 
strength anywhere in the uniform region of the interior and not just at the 
center. 

In 1831, the English scientist Michael Faraday (1791–1862) and the 
American scientist Joseph Henry (1797–1878) independently 
demonstrated that magnetic fields can produce currents. The basic process 
of generating emfs (electromotive force) and, hence, currents with 
magnetic fields is known as induction; this process is also called magnetic 
induction to distinguish it from charging by induction, which utilizes the 
Coulomb force. 



So we see that changing the magnitude or direction of a magnetic 
field produces an emf. Experiments revealed that there is a crucial quantity 
called the magnetic flux, Φ, given by 

Φ ൌ ܣܤ cos θ, (1.3.30)

where B is the magnetic field strength over an area A, at an angle θ with 
the perpendicular to the area. Any change in magnetic flux Φ induces an 
emf. This process is defined to be electromagnetic induction. Units of 
magnetic flux Φ are [T ⋅ m2]. Faraday’s experiments showed that the emf 
induced by a change in magnetic flux depends on only a few factors. First, 
emf is directly proportional to the change in flux ΔΦ. Second, emf is 
greatest when the change in time Δt is smallest – that is, emf is inversely 
proportional to Δt. Finally, if a coil has N turns, an emf will be produced 
that is N times greater than for a single coil, so that emf is directly 
proportional to N. The equation for the emf induced by a change in 
magnetic flux is 

݌݉݁ ൌ െܰ
∆Φ
Δݐ . (1.3.31)

This relationship is known as Faraday’s law of induction. The units 
for emf are volts, as is usual. The minus sign in Faraday’s law of induction 
is very important. The minus means that the emf creates a current I and 
magnetic field B that oppose the change in flux ΔΦ – this is known as 
Lenz’s law. The direction (given by the minus sign) of the emf is so 
important that it is called Lenz’s law after the Russian Heinrich Lenz 
(1804–1865), who like Faraday and Henry, independently investigated 
aspects of induction. Faraday was aware of the direction, but Lenz stated it 
so clearly that he is credited for its discovery. There are many connections 
between the electric force and the magnetic force. The fact that a moving 
electric field produces a magnetic field and, conversely, a moving 
magnetic field produces an electric field is part of why electric and 
magnetic forces are now considered to be different manifestations of the 
same force. This classic unification of electric and magnetic forces into 
what is called the electromagnetic force is the inspiration for contemporary 
efforts to unify other basic forces. When the coil of a motor is turned, 
magnetic flux changes, and an emf (consistent with Faraday’s law of 



induction) is induced. The motor thus acts as a generator whenever its coil 
rotates. This will happen whether the shaft is turned by an external input, 
like a belt drive, or by the action of the motor itself. That is, when a motor 
is doing work and its shaft is turning, an emf is generated. Lenz’s law tells 
us the emf opposes any change, so that the input emf that powers the 
motor will be opposed by the motor’s self-generated emf, called the back 
emf of the motor. Transformers do what their name implies–they transform 
voltages from one value to another, the term voltage is used rather than 
emf, because transformers have internal resistance. Induction is the 
process in which an emf is induced by changing magnetic flux. Many 
examples have been discussed so far, some more effective than others. 
Transformers, for example, are designed to be particularly effective at 
inducing a desired voltage and current with very little loss of energy to 
other forms. Is there a useful physical quantity related to how “effective” a 
given device is? The answer is yes, and that physical quantity is called 
inductance. Mutual inductance is the effect of Faraday’s law of induction 
for one device upon another, such as the primary coil in transmitting 
energy to the secondary in a transformer. Self-inductance, the effect of 
Faraday’s law of induction of a device on itself, also exists. When, for 
example, current through a coil is increased, the magnetic field and flux 
also increase, inducing a counter emf, as required by Lenz’s law. 
Conversely, if the current is decreased, an emf is induced that opposes the 
decrease. Most devices have a fixed geometry, and so the change in flux is 
due entirely to the change in current ΔI through the device. The induced 
emf is related to the physical geometry of the device and the rate of change 
of current. It is given by 

݌݉݁ ൌ െܮ
ܫ∆
ݐ∆
, (1.3.32)

where L is the self-inductance of the device. A device that exhibits 
significant self-inductance is called an inductor. The minus sign is an 
expression of Lenz’s law, indicating that emf opposes the change in 
current. Units of self-inductance are henries [H] just as for mutual 
inductance. The larger the self-inductance L of a device, the greater its 
opposition to any change in current through it. 

We know from Lenz’s law that inductances oppose changes in 
current. There is an alternative way to look at this opposition that is based 



on energy. Energy is stored in a magnetic field. It takes time to build up 
energy, and it also takes time to deplete energy; hence, there is an 
opposition to rapid change. In an inductor, the magnetic field is directly 
proportional to current and to the inductance of the device. It can be shown 
that the energy stored in an inductor Eind is given by 

௜௡ௗܧ ൌ
1
2 ܫܮ

ଶ. (1.3.33)

This expression is similar to that for the energy stored in a capacitor. 

1.4. Oscillations and Waves 

Many systems oscillate, and they have certain characteristics in 
common. All oscillations involve force and energy. Some oscillations 
create waves. Every wave is a disturbance that moves from its source and 
carries energy. Other examples of waves include earthquakes and visible 
light. Even subatomic particles, such as electrons, can behave like waves. 
The time to complete one oscillation remains constant and is called the 
period T. Its units are usually seconds, but may be any convenient unit of 
time. The word period refers to the time for some event whether repetitive 
or not; but we shall be primarily interested in periodic motion, which is by 
definition repetitive. A concept closely related to period is the frequency of 
an event. Frequency f – is defined to be the number of events per unit time. 
For periodic motion, frequency is the number of oscillations per unit time. 
The relationship between frequency and period is 

݂ ൌ
1
ܶ
. (1.4.1)

The SI unit for frequency is the cycle per second, which is defined to 
be a hertz [Hz]: 1 Hz = 1 cycle/sec or sec–1. A cycle is one complete 
oscillation. Note that a vibration can be a single or multiple events, 
whereas oscillations are usually repetitive for a significant number of 
cycles. 

The oscillations of a system in which the net force can be described 
by Hooke’s law are of special importance, because they are very common. 
They are also the simplest oscillatory systems. Simple Harmonic Motion 
(SHM) is the name given to oscillatory motion for a system where the net 
force can be described by Hooke’s law, and such a system is called a 
simple harmonic oscillator. If the net force can be described by Hooke’s 



law and there is no damping (by friction or other non-conservative forces), 
then a simple harmonic oscillator will oscillate with equal displacement on 
either side of the equilibrium position. The maximum displacement from 
equilibrium is called the amplitude X. The units for amplitude and 
displacement are the same, but depend on the type of oscillation. For the 
object on the spring, the units of amplitude and displacement are meters; 
whereas for sound oscillations, they have units of pressure (and other types 
of oscillations have yet other units). Because amplitude is the maximum 
displacement, it is related to the energy in the oscillation. The period of a 
simple harmonic oscillator is given by 

ܶ ൌ 2πට
݉
݇ . 

(1.4.2)

In fact, the mass m and the force constant k are the only factors that 
affect the period and frequency of simple harmonic motion. 

The displacement as a function of time t in any simple harmonic 
motion – that is, one in which the net restoring force can be described by 
Hooke’s law, is given by 

ሻݐሺݔ ൌ ܺ cos
2πݐ
ܶ , (1.4.3)

where X – is amplitude. A t = 0 , the initial position is x0 = X , and the 
displacement oscillates back and forth with a period T. (When t = T, we get 
x = X again because cos2π = 1.). Furthermore, from this expression for x, 
the velocity v as a function of time is given by: 

ሻݐሺݒ ൌ െݒ୫ୟ୶ sin ൬
2πݐ
ܶ ൰, (1.4.4)

where ݒ୫ୟ୶ ൌ 2πܺ ܶ ൌ ܺඥ݇ ݉.⁄⁄  The object has zero velocity at 
maximum displacement – for example, v = 0 when t = 0 , and at that time 
x = X. The minus sign in the first equation for v(t) gives the correct 
direction for the velocity. Just after the start of the motion, for instance, the 
velocity is negative because the system is moving back toward the 
equilibrium point. Finally, we can get an expression for acceleration using 
Newton’s second law. Then we have x(t), v(t), t, and a(t), the quantities 



needed for kinematics and a description of simple harmonic motion. 
According to Newton’s second law, the acceleration is a = F/m = kx/m. 
So, a(t) is also a cosine function: 

ܽሺݐሻ ൌ െ
݇ܺ
݉ cos

2πݐ
ܶ . (1.4.5)

On the Fig. 15 shows the graphs of x(t), v(t), and a(t) versus t for the 
motion of an object on a spring. The net force on the object can be 
described by Hooke’s law, and so the object undergoes simple harmonic 
motion. Note that the initial position has the vertical displacement at its 
maximum value X; v is initially zero and then negative as the object moves 
down; and the initial acceleration is negative, back toward the equilibrium 
position and becomes zero at that point. The most important point here is 
that these equations are mathematically straightforward and are valid for 
all simple harmonic motion. They are very useful in visualizing waves 
associated with simple harmonic motion, including visualizing how waves 
add with one another. 

Pendulums are in common usage. A simple pendulum is defined to 
have an object that has a small mass, also known as the pendulum bob, 
which is suspended from a light wire or string. For the simple pendulum: 

ܶ ൌ 2πට
݉
݇ ൌ 2πඨ

݉
݉݃ ⁄ܮ , (1.4.6)

where the force constant is given by k = mg/L. 
Thus, 

ܶ ൌ 2πඨ
ܮ
݃ (1.4.7)

for the period of a simple pendulum. This result is interesting because of 
its simplicity. The only things that affect the period of a simple pendulum 
are its length and the acceleration due to gravity. The period is completely 
independent of other factors, such as mass. 



Fig. 15. The simple harmonic motion of an object on a spring and presents graphs of 
x(t),v(t), and a(t) versus time 

Because a simple harmonic oscillator has no dissipative forces, the 
other important form of energy is kinetic energy KE. Conservation of 
energy for these two forms is: 

ܧܭ ൅ ௘௟ܧܲ ൌ constatnt. (1.4.8)



In the case of undamped simple harmonic motion, the energy 
oscillates back and forth between kinetic and potential, going completely 
from one to the other as the system oscillates. So for the simple example of 
an object on a frictionless surface attached to a spring. 

The phenomenon of driving a system with a frequency equal to its 
natural frequency is called resonance. A system being driven at its natural 
frequency is said to resonate. Wave is a disturbance that propagates, or 
moves from the place it was created. For water waves, the disturbance is in 
the surface of the water, perhaps created by a rock thrown into a pond or 
by a swimmer splashing the surface repeatedly. For sound waves, the 
disturbance is a change in air pressure, perhaps created by the oscillating 
cone inside a speaker. For earthquakes, there are several types of 
disturbances, including disturbance of Earth’s surface and pressure 
disturbances under the surface. Even radio waves are most easily 
understood using an analogy with water waves. Visualizing water waves is 
useful because there is more to it than just a mental image. Water waves 
exhibit characteristics common to all waves, such as amplitude, period, 
frequency and energy. All wave characteristics can be described by a small 
set of underlying principles. We define wave velocity vw to be the speed at 
which the disturbance moves. Wave velocity is sometimes also called the 
propagation velocity or propagation speed, because the disturbance 
propagates from one location to another. The water wave also has a length 
associated with it, called its wavelength λ, the distance between adjacent 
identical parts of a wave (λ is the distance parallel to the direction of 
propagation). The speed of propagation vw is the distance the wave travels 
in a given time, which is one wavelength in the time of one period. In 
equation form, that is 

௪ݒ ൌ
λ
ܶ ൌ ݂λ. (1.4.9)

When two or more waves arrive at the same point, they superimpose 
themselves on one another. More specifically, the disturbances of waves 
are superimposed when they come together – a phenomenon called 
superposition. Each disturbance corresponds to a force, and forces add. If 
the disturbances are along the same line, then the resulting wave is a 
simple addition of the disturbances of the individual waves – that is, their 
amplitudes add. 



The Doppler effect is an alteration in the observed frequency of a 
sound due to motion of either the source or the observer. For a stationary 
observer and a moving source, the frequency fobs received by the observer 
can be shown to be 

௢݂௕௦ ൌ ௦݂ ൬
௪ݒ

௪ݒ േ ௦ݒ
൰, (1.4.10)

where fs is the frequency of the source, vs is the speed of the source along a 
line joining the source and observer, and vw is the speed of sound. The 
minus sign is used for motion toward the observer and the plus sign for 
motion away from the observer, producing the appropriate shifts up and 
down in frequency. Note that the greater the speed of the source, the 
greater the effect. Similarly, for a stationary source and moving observer, 
the frequency received by the observer fobs is given by 

௢݂௕௦ ൌ ௦݂ ൬
௪ݒ േ ௢௕௦ݒ

௪ݒ
൰, (1.4.11)

where vobs is the speed of the observer along a line joining the source and 
observer. Here the plus sign is for motion toward the source, and the minus 
is for motion away from the source. 

The energy effects of a wave depend on time as well as amplitude. 
For example, the longer deep-heat ultrasound is applied, the more energy it 
transfers. Waves can also be concentrated or spread out. Sunlight, for 
example, can be focused to burn wood. Earthquakes spread out, so they do 
less damage the farther they get from the source. In both cases, changing 
the area the waves cover has important effects. All these pertinent factors 
are included in the definition of intensity I as power per unit area: 

ܫ ൌ
ܲ
 ,ܣ

(1.4.12)

where P is the power carried by the wave through area A. The definition of 
intensity is valid for any energy in transit, including that carried by waves. 
The SI unit for intensity is watts per square meter [W/m2]. For example, 
infrared and visible energy from the Sun impinge on Earth at an intensity 
of 1300 W/m2 just above the atmosphere. There are other intensity-related 
units in use, too. The most common is the decibel. For example, a 
90 decibel sound level corresponds to an intensity of 10−3 W/m2. 



There is a relationship between the E- and B-field strengths in an 
electromagnetic wave. This can be understood by again considering the 
antenna just described. The stronger the E-field created by a separation of 
charge, the greater the current and, hence, the greater the B-field created. 
Since current is directly proportional to voltage (Ohm’s law) and voltage is 
directly proportional to E-field strength, the two should be directly 
proportional. It can be shown that the magnitudes of the fields do have a 
constant ratio, equal to the speed of light. That is, 

ܧ
ܤ
ൌ ܿ, (1.4.13)

where c is the speed of light. 
Electromagnetic waves can bring energy into a system by virtue of 

their electric and magnetic fields. These fields can exert forces and move 
charges in the system and, thus, do work on them. If the frequency of the 
electromagnetic wave is the same as the natural frequencies of the system 
(such as microwaves at the resonant frequency of water molecules), the 
transfer of energy is much more efficient. A wave’s energy is proportional 
to its amplitude squared (E2 or B2). This is true for waves on guitar strings, 
for water waves, and for sound waves, where amplitude is proportional to 
pressure. In electromagnetic waves, the amplitude is the maximum field 
strength of the electric and magnetic fields. 

Thus the energy carried and the intensity I of an electromagnetic 
wave is proportional to E2 and B2. In fact, for a continuous sinusoidal 
electromagnetic wave, the average intensity Iave is given by 

௔௩௘ܫ ൌ
଴ܤ଴ܧ
2μ଴

. (1.4.14)

The Scotsman James Clerk Maxwell (1831–1879) is regarded as the 
greatest theoretical physicist of the 19th century. Although he died young, 
Maxwell not only formulated a complete electromagnetic theory, 
represented by Maxwell’s equations, he also developed the kinetic theory 
of gases and made significant contributions to the understanding of color 
vision and the nature of Saturn’s rings. Maxwell brought together all the 
work that had been done by brilliant physicists such as Oersted, Coulomb, 
Gauss, and Faraday, and added his own insights to develop the 



overarching theory of electromagnetism. Maxwell’s equations are 
paraphrased here in words because their mathematical statement is beyond 
the level of this text. However, the equations illustrate how apparently 
simple mathematical statements can elegantly unite and express a 
multitude of concepts – why mathematics is the language of science. 
Maxwell’s Theory: 

I. Electric field lines originate on positive charges and terminate on 
negative charges. The electric field is defined as the force per unit charge 
on a test charge, and the strength of the force is related to the electric 
constant ε0, also known as the permittivity of free space. From Maxwell’s 
first equation we obtain a special form of Coulomb’s law known as 
Gauss’s law for electricity. 

II. Magnetic field lines are continuous, having no beginning or end.
No magnetic monopoles are known to exist. The strength of the magnetic 
force is related to the magnetic constant μ0, also known as the permeability 
of free space. This second of Maxwell’s equations is known as Gauss’s 
law for magnetism. 

III. A changing magnetic field induces an electromotive force (emf)
and, hence, an electric field. The direction of the emf opposes the change. 
This third of Maxwell’s equations is Faraday’s law of induction, and 
includes Lenz’s law.  

IV. Magnetic fields are generated by moving charges or by changing
electric fields. This fourth of Maxwell’s equations encompasses Ampere’s 
law and adds another source of magnetism – changing electric fields. 

There are many types of waves, such as water waves and even 
earthquakes. Among the many shared attributes of waves are propagation 
speed, frequency, and wavelength. These are always related by the 
expression vW = fλ. Fig. 16 shows how the various types of 
electromagnetic waves are categorized according to their wavelengths and 
frequencies – that is, it shows the electromagnetic spectrum. Many of the 
characteristics of the various types of electromagnetic waves are related to 
their frequencies and wavelengths, as we shall see. 



Fig. 16. The electromagnetic spectrum, showing the major categories 
of electromagnetic waves 

Three rules that apply to electromagnetic waves in general are as 
follows: 

I. High-frequency electromagnetic waves are more energetic and 
are more able to penetrate than low-frequency waves. 

II. High-frequency electromagnetic waves can carry more
information per unit time than low-frequency waves. 

III. The shorter the wavelength of any electromagnetic wave
probing a material, the smaller the detail it is possible to resolve. 

1.5. Optics 

The branch of optics that considers the behavior of light when it 
exhibits wave characteristics, particularly when it interacts with small 
objects, is called wave optics or sometimes called physical optics. The 
most certain indication of a wave is interference. This wave characteristic 
is most prominent when the wave interacts with an object that is not large 
compared with the wavelength. Interference is observed for water waves, 
sound waves, light waves. Light has wave characteristics in various media 
as well as in a vacuum. When light goes from a vacuum to some medium, 
like water, its speed and wavelength change, but its frequency f remains 
the same. We can think of light as a forced oscillation that must have the 
frequency of the original source. The speed of light in a medium is 
ݒ ൌ ܿ ݊⁄ , where n is its index of refraction. If we divide both sides of 
equation ܿ ൌ ݂λ by n, we get ܿ ݊⁄ ൌ ݂λ ݊.⁄  This implies that ݒ ൌ  ,௡ߣ݂
where λn is the wavelength in a medium and that 



λ௡ ൌ
λ
݊, 

(1.5.1)

where λ is the wavelength in vacuum and n is the medium’s index of 
refraction. Therefore, the wavelength of light is smaller in any medium 
than it is in vacuum. In water, for example, which has n = 1.333, the range 
of visible wavelengths is (380 nm)/1.333 to (760 nm)/1.333 , or λn = 285 
to 570 nm. Although wavelengths change while traveling from one 
medium to another, colors do not, since colors are associated with 
frequency. 

The Dutch scientist Christiaan Huygens (1629–1695) developed a 
useful technique for determining in detail how and where waves 
propagate. Starting from some known position, Huygens’s principle states 
that: Every point on a wavefront is a source of wavelets that spread out in 
the forward direction at the same speed as the wave itself. The new 
wavefront is a line tangent to all of the wavelets. 

Although Christiaan Huygens thought that light was a wave, Isaac 
Newton did not. Newton felt that there were other explanations for color, 
and for the interference and diffraction effects that were observable at the 
time. Owing to Newton’s tremendous stature, his view generally prevailed. 
The fact that Huygens’s principle worked was not considered evidence that 
was direct enough to prove that light is a wave. The acceptance of the 
wave character of light came many years later when, in 1801, the English 
physicist and physician Thomas Young (1773–1829) did his now-classic 
double slit experiment. Why do we not ordinarily observe wave behavior 
for light, such as observed in Young’s double slit experiment? First, light 
must interact with something small, such as the closely spaced slits used 
by Young, to show pronounced wave effects. Furthermore, Young first 
passed light from a single source (the Sun) through a single slit to make 
the light somewhat coherent. By coherent, we mean waves are in phase or 
have a definite phase relationship. Incoherent means the waves have 
random phase relationships. Why did Young then pass the light through a 
double slit? The answer to this question is that two slits provide two 
coherent light sources that then interfere constructively or destructively. 
Young used sunlight, where each wavelength forms its own pattern, 
making the effect more difficult to see. We illustrate the double slit 
experiment with monochromatic (single λ) light to clarify the effect. 
Fig. 17 shows the pure constructive and destructive interference of two 
waves having the same wavelength and amplitude. 



Fig. 17. The amplitudes of waves add: a – pure constructive interference is obtained 
when identical waves are in phase; b – pure destructive interference occurs when 

identical waves are exactly out of phase, or shifted by half a wavelength 

When light passes through narrow slits, it is diffracted into 
semicircular waves, as shown in Fig. 18, a. Pure constructive interference 
occurs where the waves are crest to crest or trough to trough. Pure 
destructive interference occurs where they are crest to trough. The light 
must fall on a screen and be scattered into our eyes for us to see the 
pattern. An analogous pattern for water waves is shown in Fig. 18, b. Note 
that regions of constructive and destructive interference move out from the 
slits at well-defined angles to the original beam. These angles depend on 
wavelength and the distance between the slits, as we shall see below. 



Fig. 18. Double slits produce two coherent sources of waves that interfere 

To obtain constructive interference for a double slit, the path length 
difference must be an integral multiple of the wavelength, or 

݀ sin θ ൌ ݉λ, for 	݉ ൌ 0, 1, െ1, 2, െ2,… ሺconstructiveሻ. (1.5.2)

Similarly, to obtain destructive interference for a double slit, the path 
length difference must be a half-integral multiple of the wavelength, or 

݀ sin θ ൌ ൬݉ ൅
1
2൰ λ, for	݉ ൌ 0, 1, െ1, 2,െ2,… ሺdistructiveሻ, (1.5.3)

where λ is the wavelength of the light, d is the distance between slits, and 
θ is the angle from the original direction of the beam as discussed above. 
We call m the order of the interference. For example, m = 4 is fourth-order 
interference. 

An interesting thing happens if you pass light through a large number 
of evenly spaced parallel slits, called a diffraction grating. An interference 
pattern is created that is very similar to the one formed by a double slit 
(see Fig. 19). 



Fig. 19. Diffraction grating and the central maximum is white, and the higher-order 
maxima disperse white light into a rainbow of colors 

The analysis of a diffraction grating is very similar to that for a 
double slit. As we know from our discussion of double slits in Young's 
Double Slit Experiment, light is diffracted by each slit and spreads out 
after passing through. Rays traveling in the same direction (at an angle θ 
relative to the incident direction) are shown in the figure. Each of these 
rays travels a different distance to a common point on a screen far away. 
The rays start in phase, and they can be in or out of phase when they reach 
a screen, depending on the difference in the path lengths traveled. As seen 
in the figure, each ray travels a distance ݀ sin θ different from that of its 
neighbor, where d is the distance between slits. If this distance equals an 
integral number of wavelengths, the rays all arrive in phase, and 
constructive interference (a maximum) is obtained. Thus, the condition 
necessary to obtain constructive interference for a diffraction grating is 

݀ sin θ ൌ ݉λ, for	݉ ൌ 0, 1, െ1, 2, െ2,… ሺconstructiveሻ, (1.5.4)

where d is the distance between slits in the grating, λ is the wavelength of 
light, and m is the order of the maximum. Note that this is exactly the 
same equation as for double slits separated by d. However, the slits are 
usually closer in diffraction gratings than in double slits, producing fewer 
maxima at larger angles. 

To obtain destructive interference for a single slit, 

ܦ sin θ ൌ ݉λ, for	݉ ൌ 1,െ1, 2, െ2, 3, … ሺdestructiveሻ, (1.5.5)

where D is the slit width, λ is the light’s wavelength, θ is the angle relative 
to the original direction of the light, and m is the order of the minimum. 



The Rayleigh criterion for the diffraction limit to resolution states 
that two images are just resolvable when the center of the diffraction 
pattern of one is directly over the first minimum of the diffraction pattern 
of the other. See Fig. 20. The first minimum is at an angle of θ, so that two 
point objects are just resolvable if they are separated by the angle 

θ ൌ 1.22
λ
 ,ܦ

(1.5.6)

where λ is the wavelength of light (or other electromagnetic radiation) and 
D is the diameter of the aperture, lens, mirror, etc., with which the two 
objects are observed. In this expression, θ has units of radians. 

Fig.20. a – graph of intensity of the diffraction pattern for a circular aperture;  
b – two point objects produce overlapping diffraction patterns 

Phase change can occur upon reflection. The rule is as follows: when 
light reflects from a medium having an index of refraction greater than 
that of the medium in which it is traveling, a 180º phase change 
(or a λ/2 shift) occurs. 

Polarization is the attribute that a wave’s oscillations have a definite 
direction relative to the direction of propagation of the wave. Waves 
having such a direction are said to be polarized. For an EM wave, we 
define the direction of polarization to be the direction parallel to the 
electric field. The oscillations in one rope are in a vertical plane and are 
said to be vertically polarized. Those in the other rope are in a horizontal 



 

plane and are horizontally polarized. If a vertical slit is placed on the first 
rope, the waves pass through. However, a vertical slit blocks the 
horizontally polarized waves. For EM waves, the direction of the electric 
field is analogous to the disturbances on the ropes. The Sun and many 
other light sources produce waves that are randomly polarized. Such light 
is said to be unpolarized because it is composed of many waves with all 
possible directions of polarization. The axis of a polarizing filter is the 
direction along which the filter passes the electric field of an EM wave. 
Only the component of the EM wave parallel to the axis of a filter is 
passed. Let us call the angle between the direction of polarization and the 
axis of a filter θ. If the electric field has an amplitude E, then the 
transmitted part of the wave has an amplitude ܧ cos θ (see Fig. 21). Since 
the intensity of a wave is proportional to its amplitude squared, the 
intensity I of the transmitted wave is related to the incident wave by 

 
ܫ ൌ ଴cosଶθ, (1.5.7)ܫ

 
where I0 is the intensity of the polarized wave before passing through the 
filter. The above equation is known as Malus’s law. 

 

 
Fig. 21. Polarizing filter transmits only the component of the wave parallel to its axis 

 
Since the part of the light that is not reflected is refracted, the amount 

of polarization depends on the indices of refraction of the media involved. 
It can be shown that reflected light is completely polarized at an angle of 
reflection θb, given by 

 

tan θ௕ ൌ
݊ଶ
݊ଵ
, (1.5.8)



 

where n1 is the medium in which the incident and reflected light travel and 
n2 is the index of refraction of the medium that forms the interface that 
reflects the light. This equation is known as Brewster’s law, and θb is 
known as Brewster’s angle, named after the 19th-century Scottish 
physicist who discovered them. 

Many crystals and solutions rotate the plane of polarization of light 
passing through them. Such substances are said to be optically active. 
Examples include sugar water, insulin, and collagen. In addition to 
depending on the type of substance, the amount and direction of rotation 
depends on a number of factors. Among these is the concentration of the 
substance, the distance the light travels through it, and the wavelength of 
light. Optical activity is due to the asymmetric shape of molecules in the 
substance, such as being helical. Measurements of the rotation of polarized 
light passing through substances can thus be used to measure concentra- 
tions, a standard technique for sugars. It can also give information on the 
shapes of molecules, such as proteins, and factors that affect their shapes, 
such as temperature and pH. Another interesting phenomenon associated 
with polarized light is the ability of some crystals to split an unpolarized 
beam of light into two. Such crystals are said to be birefringent. Each of 
the separated rays has a specific polarization. One behaves normally and is 
called the ordinary ray, whereas the other does not obey Snell’s law and is 
called the extraordinary ray. Birefringent crystals can be used to produce 
polarized beams from unpolarized light. Some birefringent materials 
preferentially absorb one of the polarizations. These materials are called 
dichroic and can produce polarization by this preferential absorption. This 
is fundamentally how polarizing filters and other polarizers work. 

 

1.6. Nuclear and Quantum Physics 
 

Quantum mechanics is the branch of physics needed to deal with 
submicroscopic objects. Because these objects are smaller than we can 
observe directly with our senses and generally must be observed with the 
aid of instruments. Quantum mechanics is valid in general, and it must be 
used rather than classical physics to describe small objects, such as atoms. 
Atoms, molecules, and fundamental electron and proton charges are all 
examples of physical entities that are quantized – that is, they appear only 
in certain discrete values and do not have every conceivable value. 
Quantized is the opposite of continuous. Rather, everything is built of 
integral multiples of these substructures. Quantum physics is the branch of 



 

physics that deals with small objects and the quantization of various 
entities, including energy and angular momentum. Just as with classical 
physics, quantum physics has several subfields, such as mechanics and the 
study of electromagnetic forces. The correspondence principle states that 
in the classical limit (large, slow-moving objects) quantum mechanics 
becomes the same as classical physics. The EM spectrum radiated by a hot 
solid is linked directly to the solid’s temperature. (See Fig. 22.) An ideal 
radiator is one that has an emissivity of 1 at all wavelengths and, thus, is 
jet black. Ideal radiators are therefore called blackbodies, and their EM 
radiation is called blackbody radiation. Total intensity of the radiation 
varies as T4, the fourth power of the absolute temperature of the body, and 
that the peak of the spectrum shifts to shorter wavelengths at higher 
temperatures. All of this seems quite continuous, but it was the curve of 
the spectrum of intensity versus wavelength that gave a clue that the 
energies of the atoms in the solid are quantized. In fact, providing a 
theoretical explanation for the experimentally measured shape of the 
spectrum was a mystery at the turn of the century. When this “ultraviolet 
catastrophe” was eventually solved, the answers led to new technologies 
such as computers and the sophisticated imaging techniques. 

 

 
Fig. 22. Graphs of blackbody radiation (from an ideal radiator) at three different 

radiator temperatures. The intensity or rate of radiation emission increases 
dramatically with temperature, and the peak of the spectrum shifts toward the visible 

and ultraviolet parts of the spectrum 



 

The German physicist Max Planck (1858–1947) used the idea that 
atoms and molecules in a body act like oscillators to absorb and emit 
radiation. The energies of the oscillating atoms and molecules had to be 
quantized to correctly describe the shape of the blackbody spectrum. 
Planck deduced that the energy of an oscillator having a frequency f is 
given by 

 

ܧ ൌ ൬݊ ൅
1
2൰ ݄݂. 

(1.6.1)

 

Here n is any nonnegative integer (0, 1, 2, 3, …). The symbol h 
stands for Planck’s constant, given by 

 

݄ ൌ 6.62607015 ∙ 10ିଷସ ሾJ ∙ sሿ. (1.6.2)
 

Atomic spectra remain an important analytical tool today. Fig. 23 
shows an example of an emission spectrum obtained by passing an electric 
discharge through a material. One of the most important characteristics of 
these spectra is that they are discrete. By this we mean that only certain 
wavelengths, and hence frequencies, are emitted. This is called a line 
spectrum. If frequency and energy are associated as ∆ܧ ൌ ݄݂, the energies 
of the electrons in the emitting atoms and molecules are quantized. 

Fig. 23. Emission spectrum of oxygen 
 

When light strikes materials, it can eject electrons from them. This is 
called the photoelectric effect, meaning that light (photo) produces 
electricity. One common use of the photoelectric effect is in light meters, 
such as those that adjust the automatic iris on various types of cameras. In 
a similar way, another use is in solar cells, as you probably have in your 
calculator or have seen on a roof top or a roadside sign. These make use of 
the photoelectric effect to convert light into electricity for running different 
devices. The photoelectric effect has the properties discussed below. All 
these properties are consistent with the idea that individual photons of EM 
radiation are absorbed by individual electrons in a material, with the 
electron gaining the photon’s energy. Some of these properties are 
inconsistent with the idea that EM radiation is a simple wave. For 



 

simplicity, let us consider what happens with monochromatic EM radiation 
in which all photons have the same energy hf: 

1. If we vary the frequency of the EM radiation falling on a material, 
we find the following: for a given material, there is a threshold frequency f0 
for the EM radiation below which no electrons are ejected, regardless of 
intensity. Individual photons interact with individual electrons. Thus if the 
photon energy is too small to break an electron away, no electrons will be 
ejected. If EM radiation was a simple wave, sufficient energy could be 
obtained by increasing the intensity. 

2. Once EM radiation falls on a material, electrons are ejected 
without delay. As soon as an individual photon of a sufficiently high 
frequency is absorbed by an individual electron, the electron is ejected. If 
the EM radiation were a simple wave, several minutes would be required 
for sufficient energy to be deposited to the metal surface to eject an 
electron. 

3. The number of electrons ejected per unit time is proportional to the 
intensity of the EM radiation and to no other characteristic. High-intensity 
EM radiation consists of large numbers of photons per unit area, with all 
photons having the same characteristic energy hf. 

4. If we vary the intensity of the EM radiation and measure the 
energy of ejected electrons, we find the following: The maximum kinetic 
energy of ejected electrons is independent of the intensity of the EM 
radiation. Since there are so many electrons in a material, it is extremely 
unlikely that two photons will interact with the same electron at the same 
time, thereby increasing the energy given it. Instead (as noted in 3 above), 
increased intensity results in more electrons of the same energy being 
ejected. If EM radiation were a simple wave, a higher intensity could give 
more energy, and higher-energy electrons would be ejected. 

5. The kinetic energy of an ejected electron equals the photon energy 
minus the binding energy of the electron in the specific material. An 
individual photon can give all of its energy to an electron. The photon’s 
energy is partly used to break the electron away from the material. The 
remainder goes into the ejected electron’s kinetic energy. In equation form, 
this is given by 

 

௘ܧܭ ൌ ݄݂ െ (1.6.3) ,ܧܤ
 

where KEe is the maximum kinetic energy of the ejected electron, hf is the 
photon’s energy, and BE is the binding energy of the electron to the 



particular material. (BE is sometimes called the work function of the 
material.) This equation, due to Einstein in 1905, explains the properties of 
the photoelectric effect quantitatively. An individual photon of EM 
radiation (it does not come any other way) interacts with an individual 
electron, supplying enough energy, BE, to break it away, with the 
remainder going to kinetic energy. The binding energy is ܧܤ ൌ ݄݂଴, where 
f0 is the threshold frequency for the particular material. 

A photon is a quantum of EM radiation. Its energy is given by 
ܧ ൌ ݄݂ and is related to the frequency f and wavelength λ of the radiation 
by 

ܧ ൌ ݄݂ ൌ
݄ܿ
λ 	
ሺenergy of a photonሻ, (1.6.4)

where E is the energy of a single photon and c is the speed of light. 
All EM radiation is composed of photons. Photons act as individual 

quanta and interact with individual electrons, atoms, molecules, and so on. 
The energy a photon carries is, thus, crucial to the effects it has. Table 8 
lists representative submicroscopic energies in eV. 

Table 8 
Representative Energies for Submicroscopic Effects 

Rotational energies of molecules 105 eV 
Vibrational energies of molecules 0.1 eV 
Energy between outer electron shells in atoms 1 eV 
Binding energy of a weakly bound molecule 1 eV 
Energy of red light 2 eV 
Binding energy of a tightly bound molecule 10 eV 
Energy to ionize atom or molecule 10 to 1000 eV 

The quantum of EM radiation we call a photon has properties 
analogous to those of particles we can see, such as grains of sand. 
A photon interacts as a unit in collisions or when absorbed, rather than as 
an extensive wave. Massive quanta, like electrons, also act like 
macroscopic particles – something we expect, because they are the 
smallest units of matter. Particles carry momentum as well as energy. 
Despite photons having no mass, there has long been evidence that EM 
radiation carries momentum. (Maxwell and others who studied EM waves 
predicted that they would carry momentum.) It is now a well-established 



fact that photons do have momentum. In fact, photon momentum is 
suggested by the photoelectric effect, where photons knock electrons out 
of a substance. 

Not only is momentum conserved in all realms of physics, but all 
types of particles are found to have momentum. We expect particles with 
mass to have momentum, but now we see that massless particles including 
photons also carry momentum. Momentum is conserved in quantum 
mechanics just as it is in relativity and classical physics. Some of the 
earliest direct experimental evidence of this came from scattering of x-ray 
photons by electrons in substances, named Compton scattering after the 
American physicist Arthur H. Compton (1892–1962). Around 1923, 
Compton observed that x rays scattered from materials had a decreased 
energy and correctly analyzed this as being due to the scattering of photons 
from electrons. This phenomenon could be handled as a collision between 
two particles – a photon and an electron at rest in the material. Energy and 
momentum are conserved in the collision. He won a Nobel Prize in 1929 
for the discovery of this scattering, now called the Compton Effect, 
because it helped prove that photon momentum is given by 

݌ ൌ
݄
λ, 

(1.6.5)

where h is Planck’s constant and λ is the photon wavelength. We can see 
that photon momentum is small, since p = h/λ and h is very small. It is for 
this reason that we do not ordinarily observe photon momentum. Our 
mirrors do not recoil when light reflects from them. Compton saw the 
effects of photon momentum because he was observing x rays, which have 
a small wavelength and a relatively large momentum, interacting with the 
lightest of particles, the electron. In 1923 a French physics graduate 
student named Prince Louis-Victor de Broglie (1892–1987) made a radical 
proposal based on the hope that nature is symmetric. If EM radiation has 
both particle and wave properties, then nature would be symmetric if 
matter also had both particle and wave properties. If what we once thought 
of as an unequivocal wave (EM radiation) is also a particle, then what we 
think of as an unequivocal particle (matter) may also be a wave. De 
Broglie’s suggestion, made as part of his doctoral thesis, was so radical 
that it was greeted with some skepticism. A copy of his thesis was sent to 
Einstein, who said it was not only probably correct, but that it might be of 
fundamental importance. With the support of Einstein and a few other 



prominent physicists, de Broglie was awarded his doctorate. De Broglie 
took both relativity and quantum mechanics into account to develop the 
proposal that all particles have a wavelength, given by 

λ ൌ
݄
	݌
ሺmatter and photonsሻ, (1.6.6)

where h is Planck’s constant and p is momentum. This is defined to be the 
de Broglie wavelength. Note that we already have this for photons, from 
the equation (1.6.5). The hallmark of a wave is interference. All 
microscopic particles, whether massless, like photons, or having mass, like 
electrons, have wave properties. The relationship between momentum and 
wavelength is fundamental for all particles. 

After de Broglie proposed the wave nature of matter, many 
physicists, including Schrödinger and Heisenberg, explored the 
consequences. The idea quickly emerged that, because of its wave 
character, a particle’s trajectory and destination cannot be precisely 
predicted for each particle individually. However, each particle goes to a 
definite place (as illustrated in Fig. 24). After compiling enough data, you 
get a distribution related to the particle’s wavelength and diffraction 
pattern. There is a certain probability of finding the particle at a given 
location, and the overall pattern is called a probability distribution. Those 
who developed quantum mechanics devised equations that predicted the 
probability distribution in various circumstances. 

Fig. 24. The building up of the diffraction pattern of electrons scattered  
from a crystal surface 



It was Werner Heisenberg who first stated the limit to knowledge in 
1929 as a result of his work on quantum mechanics and the wave 
characteristics of all particles. Specifically, consider simultaneously 
measuring the position and momentum of an electron (it could be any 
particle). There is an uncertainty in position Δx that is approximately equal 
to the wavelength of the particle. That is, 

Δݔ ൎ λ. (1.6.7)

If the electron’s position is measured repeatedly, a spread in 
locations will be observed, implying an uncertainty in position Δx. To 
detect the position of the particle, we must interact with it, such as having 
it collide with a detector. In the collision, the particle will lose momentum. 
This change in momentum could be anywhere from close to zero to the 
total momentum of the particle, ݌ ൌ ݄ λ.⁄  It is not possible to tell how 
much momentum will be transferred to a detector, and so there is an 
uncertainty in momentum Δp, too. In fact, the uncertainty in momentum 
may be as large as the momentum itself, which in equation form means 
that 

Δ݌ ൌൎ
݄
λ. 

(1.6.8)

The uncertainty in position can be reduced by using a shorter-
wavelength electron, since (1.6.7). But shortening the wavelength 
increases the uncertainty in momentum, since (1.6.8). Conversely, the 
uncertainty in momentum can be reduced by using a longer-wavelength 
electron, but this increases the uncertainty in position. Mathematically, you 
can express this trade-off by multiplying the uncertainties. The wavelength 
cancels, leaving 

݌ݔ∆ ൎ ݄. (1.6.9)

So if one uncertainty is reduced, the other must increase so that their 
product is ≈h. With the use of advanced mathematics, Heisenberg showed 
that the best that can be done in a simultaneous measurement of position 
and momentum is 

݌∆ݔ∆ ൒
݄
4π. (1.6.10)



This is known as the Heisenberg uncertainty principle. It is 
impossible to measure position x and momentum p simultaneously with 
uncertainties Δx and Δp that multiply to be less than ݄ 4π.⁄  Neither 
uncertainty can be zero. Neither uncertainty can become small without the 
other becoming large. A small wavelength allows accurate position 
measurement, but it increases the momentum of the probe to the point that 
it further disturbs the momentum of a system being measured. For 
example, if an electron is scattered from an atom and has a wavelength 
small enough to detect the position of electrons in the atom, its momentum 
can knock the electrons from their orbits in a manner that loses 
information about their original motion. It is therefore impossible to follow 
an electron in its orbit around an atom. If you measure the electron’s 
position, you will find it in a definite location, but the atom will be 
disrupted. Repeated measurements on identical atoms will produce 
interesting probability distributions for electrons around the atom, but they 
will not produce motion information. The probability distributions are 
referred to as electron clouds or orbitals. There is another form of 
Heisenberg’s uncertainty principle for simultaneous measurements of 
energy and time. In equation form, 

ݐ∆ܧ∆ ൒
݄
4π
, (1.6.11)

where ΔE is the uncertainty in energy and Δt is the uncertainty in time. 
This means that within a time interval Δt, it is not possible to measure 
energy precisely – there will be an uncertainty ΔE in the measurement. In 
order to measure energy more precisely (to make ΔE smaller), we must 
increase Δt. This time interval may be the amount of time we take to make 
the measurement, or it could be the amount of time a particular state exists. 

People have long speculated about the structure of matter and the 
existence of atoms. The earliest significant ideas to survive are due to the 
ancient Greeks in the fifth century BCE, especially those of the 
philosophers Leucippus and Democritus. (There is some evidence that 
philosophers in both India and China made similar speculations, at about 
the same time.) They considered the question of whether a substance can 
be divided without limit into ever smaller pieces. There are only a few 
possible answers to this question. One is that infinitesimally small sub- 
division is possible. Another is what Democritus in particular believed – 



that there is a smallest unit that cannot be further subdivided. Democritus 
called this the atom. We now know that atoms themselves can be 
subdivided, but their identity is destroyed in the process, so the Greeks 
were correct in a respect. The Greeks also felt that atoms were in constant 
motion, another correct notion. Knowledge of the properties of elements 
and compounds grew, culminating in the mid-19th-century development of 
the periodic table of the elements by Dmitri Mendeleev (1834–1907), the 
great Russian chemist. Mendeleev proposed an ingenious array that 
highlighted the periodic nature of the properties of elements. Believing in 
the systematics of the periodic table, he also predicted the existence of 
then-unknown elements to complete it. Once these elements were 
discovered and determined to have properties predicted by Mendeleev, his 
periodic table became universally accepted. The first truly direct evidence 
of atoms is credited to Robert Brown, a Scottish botanist. In 1827, he 
noticed that tiny pollen grains suspended in still water moved about in 
complex paths. This can be observed with a microscope for any small 
particles in a fluid. The motion is caused by the random thermal motions 
of fluid molecules colliding with particles in the fluid, and it is now called 
Brownian motion. 

It was Albert Einstein who, starting in his epochal year of 1905, 
published several papers that explained precisely how Brownian motion 
could be used to measure the size of atoms and molecules. (In 1905 
Einstein created special relativity, proposed photons as quanta of EM 
radiation, and produced a theory of Brownian motion that allowed the size 
of atoms to be determined. All of this was done in his spare time, since he 
worked days as a patent examiner. Any one of these very basic works 
could have been the crowning achievement of an entire career – yet 
Einstein did even more in later years.) Their sizes were only approximately 
known to be 10−10 m, based on a comparison of latent heat of vaporization 
and surface tension made in about 1805 by Thomas Young of double-slit 
fame and the famous astronomer and mathematician Simon Laplace. Using 
Einstein’s ideas, the French physicist Jean-Baptiste Perrin (1870–1942) 
carefully observed Brownian motion; not only did he confirm Einstein’s 
theory, he also produced accurate sizes for atoms and molecules. Since 
molecular weights and densities of materials were well established, 
knowing atomic and molecular sizes allowed a precise value for 
Avogadro’s number to be obtained. (If we know how big an atom is, we 
know how many fit into a certain volume.) Perrin also used these ideas to 



explain atomic and molecular agitation effects in sedimentation, and he 
received the 1926 Nobel Prize for his achievements. Most scientists were 
already convinced of the existence of atoms, but the accurate observation 
and analysis of Brownian motion was conclusive – it was the first truly 
direct evidence. 

The English physicist J. J. Thomson (1856–1940) improved and 
expanded the scope of experiments with gas discharge tubes. He verified 
the negative charge of the cathode rays with both magnetic and electric 
fields. Additionally, he collected the rays in a metal cup and found an 
excess of negative charge. Thomson was also able to measure the ratio of 
the charge of the electron to its mass, ݍ௘ ݉௘⁄  – an important step to finding 
the actual values of both qe and me. Thomson performed a variety of 
experiments using differing gases in discharge tubes and employing other 
methods, such as the photoelectric effect, for freeing electrons from atoms. 
He always found the same properties for the electron, proving it to be an 
independent particle. Thomson was awarded the 1906 Nobel Prize in 
Physics. In retrospect, it is difficult to appreciate how astonishing it was to 
find that the atom has a substructure. An American physicist, Robert 
Millikan (1868–1953), decided to improve upon Thomson’s experiment 
for measuring qe and was eventually forced to try another approach, which 
is now a classic experiment performed by students. With the charge of the 
electron known and the charge-to-mass ratio known, the electron’s mass 
can be calculated. It is 

݉ ൌ ௤೐
ቀ೜೐೘೐

ቁ
, (1.6.12)

or me = 9.10938215 · 1031 [kg]. 
A similar calculation gives the masses of other particles, including 

the proton mp = 1.67262192369 · 1027 [kg]. 
Based on the size and mass of the nucleus revealed by his 

experiment, as well as the mass of electrons, Rutherford proposed the 
planetary model of the atom. The planetary model of the atom pictures 
low-mass electrons orbiting a large-mass nucleus. The sizes of the electron 
orbits are large compared with the size of the nucleus, with mostly vacuum 
inside the atom. This picture is analogous to how low-mass planets in our 
solar system orbit the large-mass Sun at distances large compared with the 
size of the sun. In the atom, the attractive Coulomb force is analogous to 
gravitation in the planetary system. (See Fig. 25). 



Fig. 25. Rutherford’s planetary model of the atom incorporates the characteristics of 
the nucleus, electrons, and the size of the atom 

The great Danish physicist Niels Bohr (1885–1962) made immediate 
use of Rutherford’s planetary model of the atom. Bohr became convinced 
of its validity and spent part of 1912 at Rutherford’s laboratory. In 1913, 
after returning to Copenhagen, he began publishing his theory of the 
simplest atom, hydrogen, based on the planetary model of the atom. For 
decades, many questions had been asked about atomic characteristics. 
From their sizes to their spectra, much was known about atoms, but little 
had been explained in terms of the laws of physics. Bohr’s theory 
explained the atomic spectrum of hydrogen and established new and 
broadly applicable principles in quantum mechanics. Bohr was able to 
derive the formula for the hydrogen spectrum using basic physics, the 
planetary model of the atom, and some very important new proposals. His 
first proposal is that only certain orbits are allowed: we say that the orbits 
of electrons in atoms are quantized. Each orbit has a different energy, and 
electrons can move to a higher orbit by absorbing energy and drop to a 
lower orbit by emitting energy. If the orbits are quantized, the amount of 
energy absorbed or emitted is also quantized, producing discrete spectra. 
Photon absorption and emission are among the primary methods of 
transferring energy into and out of atoms. The energies of the photons are 
quantized, and their energy is explained as being equal to the change in 
energy of the electron when it moves from one orbit to another. In 
equation form, this is 

ܧ∆ ൌ ݄݂ ൌ ௜ܧ െ ௙. (1.6.13)ܧ



Here, ΔE is the change in energy between the initial and final orbits, 
and hf is the energy of the absorbed or emitted photon. It is quite logical 
(that is, expected from our everyday experience) that energy is involved in 
changing orbits. Fig. 26 shows an energy-level diagram, a convenient way 
to display energy states. In the present discussion, we take these to be the 
allowed energy levels of the electron. Energy is plotted vertically with the 
lowest or ground state at the bottom and with excited states above. Given 
the energies of the lines in an atomic spectrum, it is possible (although 
sometimes very difficult) to determine the energy levels of an atom. 
Energy-level diagrams are used for many systems, including molecules 
and nuclei. A theory of the atom or any other system must predict its 
energies based on the physics of the system. 

Fig. 26. An energy-level diagram plots energy vertically and is useful in visualizing 
the energy states of a system and the transitions between them 

Assuming circular orbits, Bohr proposed that the angular momentum 
L of an electron in its orbit is quantized, that is, it has only specific, 
discrete values. The value for L is given by the formula 

ܮ ൌ ݉௘ݎݒ௡ ൌ ݊ ௛
ଶ஠

ሺ݊ ൌ 1, 2, 3, … ሻ, (1.6.14)

where L is the angular momentum, me is the electron’s mass, rn is the 
radius of the n th orbit, and h is Planck’s constant. 



Angular momentum quantization is stated in an earlier equation. We 
solve that equation for v, substitute it into the above, and rearrange the 
expression to obtain the radius of the orbit. This yields: 

௡ݎ ൌ
௡మ

௓
ܽ஻, for	allowed orbits ሺn ൌ 1, 2, 3, … ሻ, (1.6.15)

where aB is defined to be the Bohr radius, since for the lowest orbit (n = 1) 
and for hydrogen (Z = 1) , r1 = aB. These last two equations can be used to 
calculate the radius of the allowed (quantized) electron orbits in any 
hydrogen-like atom. Now we substitute rn and v from earlier equations into 
the above expression for energy. Algebraic manipulation yields 

௡ܧ ൌ െ௓మ

௡మ
଴ܧ ሺ݊ ൌ 1, 2, 3, … ሻ, (1.6.16)

for the orbital energies of hydrogen-like atoms. Here, E0 is the ground-
state energy (n = 1) for hydrogen (Z = 1). Electron orbital energies are 
quantized in all atoms and molecules. Angular momentum is quantized. 
The electrons do not spiral into the nucleus, as expected classically, 
accelerated charges radiate, so that the electron orbits classically would 
decay quickly, and the electrons would sit on the nucleus – matter would 
collapse. 

Physical characteristics that are quantized – such as energy, charge, 
and angular momentum – are of such importance that names and symbols 
are given to them. The values of quantized entities are expressed in terms 
of quantum numbers, and the rules governing them are of the utmost 
importance in determining what nature is and does. The fact that the 
magnitude of angular momentum is quantized was first recognized by 
Bohr in relation to the hydrogen atom; it is now known to be true in 
general. With the development of quantum mechanics, it was found that 
the magnitude of angular momentum L can have only the values 

ܮ ൌ ඥ݈ሺ݈ ൅ 1ሻ
݄
ߨ2

ሺ݈ ൌ 0, 1, 2, … , ݊ െ 1ሻ, (1.6.17)

where l is defined to be the angular momentum quantum number. The rule 
for l in atoms is given in the parentheses. Intrinsic angular momentum is 
quantized independently of orbital angular momentum. Additionally, the 



direction of the spin is also quantized. It has been found that the magnitude 
of the intrinsic (internal) spin angular momentum, S, of an electron is 
given by 

ܵ ൌ ඥݏሺݏ ൅ 1ሻ
݄
ߨ2 ൬ݏ ൌ

1
2 for electrons൰, (1.6.18)

where s is defined to be the spin quantum number. 
In 1925, the Austrian physicist Wolfgang Pauli proposed the 

following rule: No two electrons can have the same set of quantum 
numbers. That is, no two electrons can be in the same state. This statement 
is known as the Pauli exclusion principle, because it excludes electrons 
from being in the same state. The Pauli exclusion principle is extremely 
powerful and very broadly applicable. It applies to any identical particles 
with half-integral intrinsic spin – hat is, having s = 1/2, 3/2, ... Thus no two 
electrons can have the same set of quantum numbers. 

In 1896, the French physicist Antoine Henri Becquerel (1852–1908) 
accidentally found that a uranium-rich mineral called pitchblende emits 
invisible, penetrating rays that can darken a photographic plate enclosed in 
an opaque envelope. The rays therefore carry energy; but amazingly, the 
pitchblende emits them continuously without any energy input. This is an 
apparent violation of the law of conservation of energy, one that we now 
understand is due to the conversion of a small amount of mass into energy, 
as related in Einstein’s famous equation ܧ ൌ ݉ܿଶ. It was soon evident that 
Becquerel’s rays originate in the nuclei of the atoms and have other unique 
characteristics. The emission of these rays is called nuclear radioactivity 
or simply radioactivity. The rays themselves are called nuclear radiation. 
A nucleus that spontaneously destroys part of its mass to emit radiation is 
said to decay (a term also used to describe the emission of radiation by 
atoms in excited states). A substance or object that emits nuclear radiation 
is said to be radioactive. Research begun by people such as New 
Zealander Ernest Rutherford soon after the discovery of nuclear radiation 
indicated that different types of rays are emitted. Eventually, three types 
were distinguished and named alpha (α), beta (β), and gamma (γ), 
because, like x-rays, their identities were initially unknown. The range of 
radiation is defined to be the distance it can travel through a material. 
Range is related to several factors, including the energy of the radiation, 
the material encountered, and the type of radiation. 



All properties of a nucleus are determined by the number of protons 
and neutrons it has. A specific combination of protons and neutrons is 
called a nuclide and is a unique nucleus. The following notation is used to 
represent a particular nuclide: 

ܺே௓
஺ , (6.19)

where the symbols A, X, Z, and N are defined as follows: The number of 
protons in a nucleus is the atomic number Z. The symbol A is defined as 
the number of nucleons or the total number of protons and neutrons, 

ܣ ൌ ܰ ൅ ܼ, (1.6.20)

where A is also called the mass number. This name for A is logical; the 
mass of an atom is nearly equal to the mass of its nucleus, since electrons 
have so little mass. 

There is a tremendous range in the half-lives of various nuclides, 
from as short as 10–23 [s] for the most unstable, to more than 1016 [yr] for 
the least unstable, or about 46 orders of magnitude. Nuclides with the 
shortest half-lives are those for which the nuclear forces are least 
attractive, an indication of the extent to which the nuclear force can 
depend on the particular combination of neutrons and protons. The concept 
of half-life is applicable to other subatomic particles. It is also applicable 
to the decay of excited states in atoms and nuclei. The following equation 
gives the quantitative relationship between the original number of nuclei 
present at time zero (N0) and the number (N) at a later time t: 

ܰ ൌ ଴ܰ݁ି஛௧, (1.6.21)

where e = 2.71828... is the base of the natural logarithm, and λ is the decay 
constant for the nuclide. The shorter the half-life, the larger is the value 
of λ, and the faster the exponential e−λt decreases with time. 



2. LABORATORY PRACTICE

2.1. Introduction to statistics, error and measurement 

When you do an experiment, it is important to be able to evaluate 
how well you can trust your measurements. For example, the known value 
of g, the acceleration due to gravity, is ≈ 9.81 [m · s2], ("≈" means appro- 
ximately equal to). If you make a measurement that says g = 10.1 [m · s2], 
is that measurement “wrong”? How do you compare that measurement to 
the known value of g? Suppose you measure some quantity that is not 
known? You may make a number of measurements, and get several 
different results. For example, suppose you measure the mass of an object 
three times, and get three different values, 5 [kg], 4.8 [kg], and 5.4 [kg]. 
Can you evaluate what the real mass of the object is from those 
measurements? 

The mathematical tools we will learn in this lab will answer some of 
these questions. They are some of the most basic methods of statistical 
analysis; they will allow us to give information about our measurements in 
a standard, concise way, and to evaluate how “correct” our measurements 
are. The methods we will cover are used in all areas of science which 
involve taking any measurements, from popularity polls of politicians, to 
evaluating the results of a clinical trial, to making precise measurements of 
basic physical quantities. Let’s start with the basics of the different kinds 
of errors, and how to measure them. 

There are two types of errors encountered in experimental physics: 
systematic errors and random errors. 

Systematic errors can be introduced 
 by the design of the experiment;
 by problems with the instruments you are using to take your

data; 
 by your own biases.
Consider a very simple experiment designed to measure the dimen-

sions of a particular piece of material precisely. A systematic error of 
could be introduced if the measuring instrument is calibrated improperly. 
For example, a scale might be set a little too low, so that what reads as 
“zero” is really “–1 kg”. Everything you measure on the scale will come 
out one kilogram lighter than it really is. If a particular observer always 
tends to overestimate the size of a measurement, that would also be a 
systematic error, but one related to the personal characteristics of the 
experimenter. 



Random errors are produced by unpredictable and uncontrollable 
variations in the experiment. These can be due to the limits of the precision 
of the measuring device, or due to the experimenter’s inability to make the 
same measurement in precisely the same way each time. Even if 
systematic errors can be eliminated by good experimental design, there 
will always be some uncertainty due to random errors. Numerical values 
measured in experiments are therefore never absolutely precise; there is 
always some uncertainty. 

The accuracy of a measurement describes how close the 
experimental result comes to the actual value. That is, it is a measure of the 
“correctness” of the result. For example, if two independent experiments 
give the values 2.717 and 2.659 for e (the base of the natural log), the first 
value is said to be more accurate because the actual value of e is 2.718… 
The precision of an experiment is a measure of the reproducibility of the 
result. Suppose you measure the same thing three times. The precision 
would be a measure of how similar all the measurements are to each other. 
It is a measure of the magnitude of uncertainty in the result. The object of 
some experiments is to measure the value of a well-known quantity, such 
as g. (You’ll be making this measurement yourselves in next week’s 
experiment!) The most accurate value of these quantities (measured by 
teams of dedicated professional scientists!!) is the value given in your 
textbooks and tables. In making a comparison between the results of your 
experiment and the accepted value measured with much more precision in 
specialized laboratories, you want to cite the percent error, a measurement 
of how much your measurement differs from the “official” value. The 
absolute difference between the experimental value E and the accepted 
value A is written |E-A|, where the “|” signs mean absolute value. The 
fractional error is the ratio of this absolute difference over the accepted 
value: 

Fractional error ൌ
ܧ| െ |ܣ
ܣ

. (2.1.1)

Usually, convert this fractional error into a percent, and give the 
percent error: 

Percent	error ൌ
ܧ| െ |ܣ
ܣ ൈ 100%. (2.1.2)



Even if systematic errors can be eliminated from an experiment, the 
mean value of a set of measurements of a quantity, x, is a better estimate of 
the true value of x than is any single measurement. For this reason, 
experiments are often repeated a number of times. If we denote x as the 
mean value, and there are N measurements xi (where i varies from 1 to N), 
then x is defined by the following equation: 

〈ݔ〉 ൌ
1
ܰ෍ݔ௜.

ே

௜ୀଵ

 (2.1.3)

To obtain the mean deviation of a set of N measurements, the 
absolute deviations of |Δxi| are determined; that is |Δxi| = |xi  x|. 

The mean deviation Δx is then 

〈ݔ∆〉 ൌ
1
ܰ෍

|௜ݔ∆|
ே

௜ୀଵ

. (2.1.4)

Usually, the report an experimental measurement as the mean “plus 
or minus” the mean deviation: E = x  Δx. 

Statistical theory states that the precision of a measurement can be 
determined using a quantity called the standard deviation, σ (called 
“sigma”, this is the Greek lower-case “s”). The standard deviation of a 
distribution of measurements is defined as follows: 

σ ൌ ඩ
1
ܰ෍

ሺݔ௜ െ ሻଶ〈ݔ〉
ே

௜ୀଵ

. (2.1.5)

The standard deviation is a measure of spread. If the standard 
deviation is small, then the spread in the measured values about the mean 
is small, and so the precision in the measurements is high. The standard 
deviation is always positive and has the same units as the measured values. 
It can be shown, for a Gaussian distribution, that 69 % of the data points 
will fall within one standard deviation of x, i. e., (x  σ) < xi < (x + 
+ σ); 95 % are within two standard deviations, and only 0.3 % are farther 
than 3σ from x. So, for example, if an experimental data point lies 3σ 
from a theoretical prediction, there is a strong chance that either the 



prediction is not correct or there are systematic errors which affect the 
experiment. Result of the measurement of E can also be reported as, 
E =x  σ. 

2.2. Experiment 1. The Determination of Gravitational Acceleration 

Purpose: 
The purpose of this experiment is to measure the earth's gravitational 

acceleration from an object in free fall. You will use the equation of 
motion of an object in free fall, starting from rest (v0 = 0): 

ሻݐሺݕ ൌ ଴ݕ ൅ ݐ଴ݒ ൅
1
ݐ2ܽ

ଶ. (2.2.1)

Fig. 27. Equipment: Ball bearing, timer, clamping post, meter stick 

Experiment: 
Using the apparatus shown above, drop a ball 
 10 times, from;
 4 different heights (you pick the heights).
To clamp the ball, push in the dowel pin until the ball is tightly 

clamped, and then tighten the thumbscrew. To release the ball, open the 
thumbscrew. Be sure to reset the timer to zero before dropping the ball! 
The lab instructor will show you how to do all this in detail. Be careful 
when you measure the height: measure from the bottom of the ball to the 
pressure pad. 

Collect your data at four different heights and enter the data in the 
tables below. For each measured y and t, you can calculate g. Since the 



initial velocity v0 is zero, the initial position is h (y0 = h), and the 
acceleration is –g (a = g), you can rearrange the equation (2.2.1). 

To solve for g: 

݃ ൌ
2݄
ଶݐ . 

(2.2.2)

You can do this with your calculator, or put the time values into 
Excel, and make an equation to solve for g at each value of t and y. For 
each height, calculate the mean value of gravity and time (<g>, <t>), and 
the standard deviation (σg, σt). 

Table 9 
Time and Gravity Data 

h1 = h2 = h3 = h4 = 
t g t g t g t g

t1 = t2 = t3 = t4 = 
σt = σt = σt = σt = 
g1 = g2 = g3 = g4 = 
σg = σg = σg = σg = 

You now have four mean values of g, each calculated at different 
height. What is the percent error of each of the values, with respect to the 
accepted value of g = 9.81 [m · s2]? What is the percent difference 
between <ghighest> and <glowest>. 

Questions: 
1. Discuss the sources of error in the experiment. Were there

sources of random error? What were they? What about systematic error? 
2. Would you expect the values of g measured at the two different

heights to be the same? Why or why not? 



3. Suppose you had used a metal ball of a different mass (say, ten
times heavier). Would you expect the value of g to be the same, or 
different? Why? 

4. For measuring the distance that the ball drops, we suggested
that you measure from the bottom of the ball to the pressure pad, in order 
to get the most accurate distance. Why shouldn’t you measure from the 
middle of the ball to the pressure pad? Explain. 

5. Which of your values for <g> was more precise? Which was
more accurate? Explain. 

2.3. Experiment 2. Newton’s Second Law: the Atwood Machine 

Purpose: 
To predict the acceleration of an Atwood Machine by applying 

Newton’s 2nd Law and use the predicted acceleration to verify the 
equations of kinematics with constant acceleration. 

The Atwood Machine consists of a pulley of negligible mass and 
friction over which two masses are suspended (Fig. 28). When the 
suspended masses are unequal, the system will accelerate in the direction 
of the larger mass. In this experiment you will measure the acceleration 
and compare to the acceleration predicted by Newton’s 2nd Law. For the 
purpose of this experiment, we will consider the acceleration to be 
constant. The system will begin at rest, at position y above the table. You 
will measure the distance y and the time t required for the system to fall to 
the table. The system’s acceleration can then be calculated using 
kinematics equations. 

Procedure: 
Use a length of string such that, when one mass holder is on the 

table, the other is between 50 cm and 60 cm above the table. Make sure 
that one mass holder is directly in front of the meter stick. 

Measure the initial mass on each holder, including the holder. 
Record the initial values:  

m1  [g] 

m2  [g]. 
These numbers should initially be (approximately) equal. 



Fig. 28. Equipment: m2 on the right, m1 on the left 

While gently holding the system (place your finger under the mass 
holder), obtain a difference of 1 gram between the sides. Let go of the 
mass holder to see if the system moves. If the system does not move, see if 
it will move if you very gently tap the larger mass. If the system still does 
not move, continue adding masses and tapping the heavier mass until the 
system does move. Record the additional mass required to start the system 
moving. 

1. With an equal total mass on each side, remove a 10 gram mass
from the side farthest from the meter stick (m2) and add it to the side in 
front of the meter stick, m1, thus making the mass difference between the 
two 20 [g]. 

2. Pull m2 (the light side) down to the table and hold it in place.
Read the distance of m1 (the heavy side) above the table by sighting across 
the bottom of the mass holder to the meter stick. 

3. Record this distance in the data table as y.
4. Release the lighter mass; the heavier mass will then fall to the

table. 
5. Use a stopwatch to determine the time required for the heavier

mass to fall. 
6. Record the time in the data table as t. Perform a total of five

trials. 



Return the 10 [g] mass to m2, remove the 20 [g] mass from m2, and 
add it to m1 so that m1 is 40 [g] heavier than m2. Repeat steps 2–6. 

Add the 10 [g] mass to m1 from m2 so that m1 is 60 [g] heavier 
than m2. Repeat steps 2–6. You should now have three sets of data, each 
having five values for y and t. 

Data: 

Mass required to start the system moving: . 
SET 1 

Trial y [m] t [s] ay [m/s] 
A

B

C

D
E

SET 2 
Trial y [m] t [s] ay [m/s] 

A
B
C
D
E

Using the equation: 

ݕ ൌ ଵ
ଶ
ܽ௬ݐଶ, (2.3.1)

and the values that were obtained for y and t; compute five values of ay for 
each of the data sets. Don’t forget to change y from cm to m in your 
equation. Compute the average value of ay for each of the data sets. These 
will be taken as the experimental values of acceleration. Compute the 
standard deviation of ay for each of the data sets. Apply Newton’s 2nd Law 
to an Atwood’s Machine and derive a formula for the expected 
acceleration in terms of m1 and m2. Start by making a free body diagram in 
the box below. The instructions following that diagram will help you find 
the theoretical equations for ay. Consider each mass as a separate object 
and draw a free body diagram for each. Note that all forces act in the 
y-direction. 



Write ∑ܨ௬ ൌ ݉ܽ௬ for each of the mass obtain two linear equations 
that include the acceleration of each mass. Solve the resulting system of 
linear equations to obtain a theoretical value for ay. Note that the masses 
are constrained to move together, so a1y = a2y = ay! (Note that absolute 
value signs may be needed in this equation, depending on what axes you 
are using. Using your values for m1 and m2, compute the expected 
acceleration for each of your three trials. These will be taken as the 
theoretical values of acceleration. Compute the % error between the 
experimental and the accepted values of acceleration. Summarize your 
results. 

Questions: 
1. The pulley is not, in fact, frictionless and massless. At the

beginning of the lab you found the mass difference needed to start 
movement of the system. How can this data be used to approximate the 
effect of friction? 

2. What are possible sources of error in measuring the values of t
and y? What effect will these errors have on your results? Suggest a 
possible change to the procedure that could eliminate these errors. 

3. Which data set in produced the most accurate value of ay?
Why? 

4. What value of ay would Newton’s 2nd Law predict as m1

becomes much larger than m2? 
5. Why would this value be expected? Hint: consider:

lim௠భ→ஶ
௠భି௠మ
௠భା௠మ

. 

2.4. Sound Waves: Harmonic in an Open-Ended Pipe 

Purpose: 
To determine the speed of sound in air using a water-filled, open 

ended pipe, a tuning fork, and the knowledge of harmonics. 
Theory: 
Sound waves are longitudinal waves, meaning that the direction of 

the displacement or movement of the particles is in the same direction as 
the propagation of the wave. Interference can occur in sound waves: when 
there is constructive interference of reverberating waves, the result is 
increased sound intensity. If a tuning fork is struck, the fork vibrates, 
causing a compression of the air particles moving spherically outward 
from the fork. When the fork oscillates inward, it creates an area of 



rarefied air particles. A region of compressed air followed by a region of 
rarefied air constitutes one wavelength. If the fork is struck over a tube 
filled with water, a sector of this wave will be captured by the tube. When 
the air particles hit the surface of water, most of energy is reflected at the 
water’s surface due to the differences in the densities of the air and the 
water. 

With each vibration of the tuning fork, another spherical wave front 
moves out from the fork, and a part of the new wave is also captured by 
the tube. When the height of the water is adjusted so that an incoming 
(compressed air) wave front is just meeting a reflected (compressed air) 
wave front at the open end of the tube, the waves will interfere 
constructively. When this happens over and over again each second, our 
ears can detect this constructive interference as increased sound intensity: 
it gets loud! 

Using our simple tube and a tuning fork, we can discover the speed 
that sound travels in air. We know that: 

ݒ ൌ ݂λ. (2.4.1)

The velocity of any wave is directly proportional both to the 
wavelength λ of the sound wave created by the tuning fork and f, the 
frequency of vibration of the tuning fork. The frequency is printed on the 
tuning fork. We can determine the wavelength by knowing a little about 
harmonics, and by creating harmonics with our tube and tuning fork. 

Harmonics: the surface of the water is considered a node. In 
transverse waves, the node occurs when the displacement is zero. 
Likewise, at the water’s surface at which the wave is reflected, the net 
displacement of the wave is zero. At the open end of the tube, the air is 
free to move, and this point is an antinode. Multiple nodes and antinodes 
will exist in the tube. L is the distance from the top of the tube to the 
surface of the water, which we will measure with a meter stick. The first 
harmonic is the case in which there is only one node and one antinode in 
the tube, and this is also called the fundamental mode. In the case of an 
open ended tube, one wavelength of the fundamental mode is four times 
the length of the tube from the top of the tube to the water’s surface: 

λ ൌ (2.4.2) .ܮ4



Substituting into (2.4.1) 
The frequencies of the third and fifth harmonics are 3f1, 5 f1... That is, 

in a pipe closed at one end and open at the other, only odd harmonics are 
present. These are given by 

௡݂ ൌ ݒ݊ ⁄ܮ4 ݊ ൌ 1, 3, 5, … (2.4.3)

Note: The diagrams in the textbook are helpful, but also somewhat 
misleading, as the diagrams are drawn as though the waves are transverse. 
Imagine regions of compressed air molecules followed by rarefied air 
moving through the tube to get a better visual picture. 

Fig. 29. Equipment: Transparent open-ended tube 

Procedure: 
1. Secure the tube vertically to the ring stand. Clamp the tuning

fork just above the tube. Attach amplifier to the tube, if an amplifier is 
available. 

2. Fill pitcher with water. If your tube does not have a valve, have
one partner hold their thumb over the bottom of the drain tube. Pour water 
into the tube to within 5 cm of the top. 

3. Strike tuning fork over the top of the tube.
4. First run: Drain water quickly from the tube, and listen closely

for the sound intensity to increase. Make note of the approximate height of 
the water when that first “harmonic” is heard. 

5. Continue to drain the water rather quickly, and a second
harmonic will be heard. Make note of the approximate height of the water. 

6. Second run: Refill the tube with water.



7. Quickly run the water out to five or six cm above where the
first harmonic was heard. Then allow the water to slowly drain, listening 
for the amplitude of the sound to maximize. Record the height of the water 
when the sound peaks. 

8. You may strike the tuning fork again.
9. Again, run the water down quickly to within five or six cm of

the point of the second harmonic. Then drain the water slowly, and record 
the height of the water when the amplitude of the sound peaks again. 

10. If you are careful, you may be able to find a third harmonic.
11. Repeat the procedure using two other tuning forks.
The speed of sound can be determined by making a graph, plotting f 

versus T, with f on the ordinate (y axis) and T on the abscissa (x axis). For 
each tuning fork you used, plot that frequency and the corresponding 
average wavelength calculated in your tables. After plotting these three 
points on the graph, find the best line to fit the data. The slope of the line is 
the velocity of sound. 

Compare what you discovered with the known velocity of sound in 
air of 343 [m · s1]. 

Questions: 
1. Did the observed frequency match your prediction, above? If

so, how? If not, why not? 
2. What is vibrating when these laboratory instruments make

sound? 

2.5. Electric Fields and Equipotential Surfaces 

Purpose: 
The purpose of this lab is to explore the electric force per unit charge 

as a function of the distance from various charged electrode 
configurations. 

Equipment: 
Multimeter, apparatus for mapping equipotentials, graph paper 

(provided). The electric force per unit charge is called the electric field 
intensity or simply the electric field (E). The electric field is a vector 
quantity given by 

ሬԦܧ ൌ
Ԧܨ
଴ݍ

ൌ ݇
ݍ
ଶݎ (2.5.1) .ݎ



Like all other vector quantities, it has both magnitude and direction. 
As discussed in the lecture, electric field lines flow from positively to 
negatively charged regions (positive to ground in this experiment). From 
the equation above (Coulomb's Law) you should also realize that the 
magnitude of the electric field decreases as the inverse square of the 
distance from the point source (in this experiment, the electrodes). This 
implies that the density of electric field lines (how close together they are) 
will decrease as you get further away from the source. 

Experiment: 
Select two configurations. Make sure at least one of them is the 

parallel plate configuration. Sketch two configurations of the electrodes 
(the copper shapes on the apparatus) on the graph paper. 
Connect the apparatus to the power supply. Turn the power supply on and 
set it to 18 volts. Connect the ground from the voltmeter to the ground 
from the power supply. Now, using the positive probe you will mark out 
some equipotential surfaces around the electrodes. Being careful to not 
touch the grid with anything other than the probe, locate 10 points each for 
the following voltages; 3, 6, 9, 12, 15 [V]. Make sure the points are spread 
out, so that you can get a good sampling of the space around each 
electrode. Connect the points of equal voltage (potential) with a smooth 
line and label them. These are equipotential surfaces. Now draw the 
corresponding electric field lines, with arrows to show the direction of the 
field. 

Questions: 
1. In your own words, explain why equipotential surfaces are

perpendicular to electric field lines. (Hint: Check your book.) 
2. What condition must exist to have a region of nearly uniform

electric fields? (Hint: think about your parallel plate configuration.) 
3. Where are regions of strongest and weakest electric fields

located? (Hint: Re-read the introduction.) 
4. Can electric field lines ever cross? Explain. (Hint: Remember

that the electric field is a vector. 

2.6. Ohm’s Law, Measurement of Voltage, Current, Resistance 

Purpose: 
In this experiment you will learn to use the multi-meter to measure 

voltage, current and resistance. 



Equipment: 
Bread board, variable DC power supply, resistors (15 kΩ, 22 kΩ, 

47 kΩ, 68 kΩ, and 1 MΩ), multi- meter, ammeter. 
The measurements of voltage, current, and resistance that you will 

make will be made using direct current (D.C.). D.C. refers to direct current 
which flows in only one direction down a wire. Usually it is a steady 
current, meaning that its magnitude is constant in time. “D.C.” can also be 
used to refer to voltage. Of course, unlike current, voltage does not “flow”. 
Instead, “D.C. voltage” (or “D.C. potential”) means a constant voltage 
which has only one polarity. One of the major concepts that will be used in 
this experiment is Ohm’s law, which we discussed in lecture. This law 
states the relation among the three quantities voltage, current, and 
resistance: 

ܸ ൌ (2.6.1) ,ܴܫ

where I is the current measured in units of amperes, [A], V is the voltage in 
units of volts, [V] and R is the resistance in units of Ohms, [Ω]. 

An easy way to think of this law is to imagine that a "current" flows 
through a wire just like water flowing through a pipe; the narrower the 
pipe, the greater the resistance. Fig. 30 shows the standard symbols for 
showing a battery and a resistor in a circuit. Remember that current flows 
from positive to negative, representing the flow of positive charge in the 
wire. (Remember also that it is really the negatively charged electrons that 
actually do the moving!) In reality, any circuit element (like a light bulb) 
can act as a resistor. For experiments and for building circuits, small 
resistors of known resistance can be added to the circuit. 

Experiment: 
1. Connect the circuit as shown by the diagram in Fig. 30. Use the

variable power supply and a 15 [KΩ] resistor. Adjust the power supply 
voltage to 5 volts. 

2. Use the multi-meter to measure the voltage across the resistor
(VR). 

3. Use the ammeter to measure the current through the resistor.
4. Record your measurements of voltage and current in Data

Table. 
5. Repeat steps 2 through 4 for 10 different values of voltage, in

steps of 1 [V]. Record all measurements in your table. 



Fig. 30. Diagram showing a voltage forcing a current to flow through a resistor 

Questions: 
1. In Part 2 of the experiment, was the value of the resistance you

obtained from your graph within the tolerance given by the resistor’s color 
code? Explain. 

2. List some possible sources of error that might have affected
your measurements in Part 2 of the experiment. 

3. Is a plot of current vs. voltage ALWAYS a straight line?
Explain why or why not. 

4. Sometimes, people might plot I on the y-axis and V on the x-
axis. (In this case, the slope will be 1/R.) Why might a scientist want to 
plot the data that way? 

2.7. Kirchhoff’s Laws 

Purpose: 
To verify Kirchhoff’s Laws by comparing voltages obtained from a 

real circuit to those predicted by Kirchhoff’s Laws. 
A simple circuit is one that can be reduced to an equivalent circuit 

containing a single resistance and a single voltage source. Many circuits 
are not simple and require the use of Kirchhoff’s Laws to determine 
voltage, current, or resistance values. Kirchhoff’s Laws for current and 
voltage are given by equations 1 and 2: 



෍ ܫ ൌ 0,
௃௨௡௖௧௜௢௡

 
(2.7.1)

෍ Δܸ ൌ 0.
௅௢௢௣

 
(2.7.2)

In this experiment, we will construct two circuits with 4 resistors and 
a voltage source. These circuits will not be simple, thus Kirchhoff’s Laws 
will be required to determine the current in each resistor. We will then use 
a digital multi-meter to obtain an experimental value for the voltage across 
each resistor in the circuits. Kirchhoff’s Laws will then be applied to the 
circuits to obtain theoretical values for the current in each resistor. By 
applying Ohm’s Law, we can then obtain a theoretical value for the 
voltage across each resistor. The experimental and theoretical voltages can 
then be compared by means of % error. 

Equipment: 
Proto-board, 4 resistors: (R1 = 68 kΩ, R2 = 47 kΩ, R3 = 15 kΩ, 

R4 = 1000 kΩ), Digital multi-meter Variable power supply, Wire leads and 
alligator clips. 

Procedure: 
1. Using the proto-board, the 4 resistors, the variable power

supply, and the wire leads and alligator clips; construct the circuit.  
2. Turn on the power supply. Connect the multi-meter across the

power supply and adjust the voltage to 8.0 volts. 
3. Connect the multi-meter across each of the 4 resistors. Record

these 4 values of voltage in the data table. 
4. Turn the power supply off and disconnect the circuit.
5. Add a second power supply to the circuit.
Turn on the power supplies. Adjust the voltages V0 and V1 to 

4.0 volts. 
6. Connect the multi-meter across each of the 4 resistors. Record

these 4 values of voltage in the data table. 
Analysis: 
Turn the power supply off and disconnect the circuit. Use equations 

(2.7.1) and (2.7.2) to write a system of linear equations that may be solved 
for the current in each branch of the circuit. Then, solve the system to 
obtain a theoretical value for each current. Using the currents obtained in 
step 1 of the analysis; apply Ohm’s Law to determine the theoretical 
voltage across each resistor. Compare the theoretical voltages obtained in 



step 2 of the analysis to those measured in the actual circuit. Repeat steps 
1 to 3 for the second circuit. Record the theoretical voltages, the 
experimental voltages, and the  % errors in the results table. 

2.8. AC Voltages, Frequency and the Use of the Oscilloscope 

Purpose: 
After completing this experiment, you will be able to use the 

oscilloscope to measure unknown voltages and frequencies. 
Equipment: 
Oscilloscope, signal generator, connecting wires. 
Procedure: 
In this experiment, we will try a few different things with the 

oscilloscope to help you become more familiar with it. Turn your 
oscilloscope on and let it warm up for a few seconds. While it's warming 
up check the following switches to make sure they're set correctly. Look 
for the area marked Trigger. There is a switch marked Mode which should 
be set to Auto. There's also a switch here marked Source. This switch 
should be all the way up, (it will be set on line). We will also be using 
Channel 1 throughout this lab, unless otherwise directed, so any switches 
marked CH1 or CH2 should be set to CH1. For the gray oscilloscope, 
leave the Source set to CH1. By now your oscilloscope should be warmed 
up. If you do not see something on the screen, try pushing the Beam Find 
button and use the Position knobs to move the trace back to the center of 
the screen. If you still see nothing, try turning the Intensity up a little. You 
will notice the screen is divided into squares. Each square is called a 
division. This is important to know because you will notice the 3 largest 
knobs are marked sec/div or volts/div. So when we see that something has 
moved say 3 divisions, we will be able to convert that to Volts or seconds. 
This is how we will make our measurements. Now, look for the knob 
marked sec/div. This knob controls the «Time base». Turn this knob to 
.1 sec/div. For the grey oscilloscope you may need different values for this 
knob. You can now see the trace move across the screen from left to right. 
You will notice it takes about a second to cross the screen. Actually it 
takes exactly a second to cross the screen. We can calculate this because 
the time base knob is on .1 sec/div and the grid on the screen is divided 
into 10 divisions horizontally and 8 divisions vertically. Multiplying gives: 

. 1
sec
div 	 ൉ 	10 ൌ 1 second. (2.8.1)



If you now set the time base knob to something smaller like 1ms/div, 
(Remember, m stands for milli = 10-3), you will see the trace move so fast 
that it's hard or impossible to see. Remember, the horizontal axis of the 
screen is where we measure time, so you just have to count the divisions 
between any two points you're interested in and multiply by the scale on 
the sec/div knob. So now you can (or will soon be able to) find how long it 
takes the trace to move between any two points on the screen. The vertical 
axis works the same way, except we use it to measure volts rather than 
time. A helpful way to think about these knobs is that changing the setting 
is like changing which units you can use on a ruler; if you're measuring a 
piece of paper you can use centimeters or millimeters or whatever. But the 
object you're measuring doesn't change as you switch between scales. Or 
you might imagine you're zooming in or out with a variable magnifying 
glass; changing the knobs just changes the magnification, and the numbers 
tell you what the magnification scale is. Connect a triangular wave of 
about 1 KHz frequency from the signal generator to CH 1 of the scope. 
Since we are measuring a wave whose frequency is in the 1 kHz range, the 
typical period will be in the ms range. Set the time base knob to 1 ms/div. 
Make sure the cal knob is all the way clockwise. Set the volts/div switch to 
2 volts/div. Check that the small knob marked cal on the volts/div knob is 
turned all the way clockwise, i.e. in its calibrated position. If this knob is 
not in the calibrated position, your measurements will be incorrect. Adjust 
the amplitude of the signal generator using the output level knob to give 
you a +/–6 volt wave (12 volts peak to peak). Be sure that the DC offset 
knob on the generator has the white dot pointed up, i.e. zero volts DC 
offset. You should see a triangular wave which has a positive maximum 
three divisions above the middle line across the screen and a negative 
minimum three divisions below. The sweep (i. e. the movement of the dot 
across the screen) is "triggered" when the voltage crosses the threshold set 
with the level control. The point at which this crossing takes place then 
becomes the "origin" of the graph. The threshold is controlled with the 
small knob marked level. Use the horizontal position knob to move the 
whole trace to the right so you can see the beginning. Explore what 
happens when the level knob is rotated. Note that you can change the 
location of the origin of your graph. 

Now look at the button or switch right by the level control marked 
slope. This controls the polarity of the voltage for which the triggering 
takes place. Both positive triggering and negative triggering are possible. 



Explore what happens when this button is both up and down or in and out 
for the gray oscilloscope. You may have to adjust the level to get stable 
triggering after this. Now make an accurate measurement of the frequency 
of the triangular wave. You will measure the period, T, the time between 
any two repeating points on the wave. For example, count accurately the 
divisions between the two maxima, and then use the information about 
sec/div from the time base knob setting to find T. The frequency is given 
by: 

݂ ൌ
1
ܶ
. (2.8.2)

Question: 
1. How many seconds does it take the trace to go across 1/2 the

screen at the 1 ms/div setting? 
2. Is the signal generator frequency knob very accurate?

2.9. RC Circuits 

Purpose: 
In this experiment you will investigate the interaction between 

current and magnetic fields. You will determine the direction of the B field 
surrounding a long straight wire using a compass (Oersted’s experiment), 
find the induced voltage in a small inductor coil, and show that the 
magnitude of the B field decreases as 1/r, determine the permeability of 
free space using a Hall probe and the constant magnetic field near a long 
straight wire. 

Equipment: 
DC power supply, function generator, oscilloscope, inductor coil, 

small compass, and long straight wire apparatus. 
When a current I exists in a long straight wire, a magnetic field B is 

generated around the wire. The field lines are concentric circles 
surrounding the wire. The magnitude of the magnetic field (B) as a 
function of I and the distance (r) away from the wire is given by: 

ܤ ൌ
μ଴ܫ
2πݎ, 

(2.9.1)



where μ0 = 4π · 10
7 [Tm/A], I is in Amperes, r is in meters, and B is in

Tesla. (The direction of B, of course, is given by the right hand rule. (Note 
that this equation is actually derived assuming that the long straight wire is 
actually infinitely long!!). If the current in the long straight wire is 
constant in time, the B field created by that current will also be constant in 
time. In this case, the direction of the B field can be determined by 
observing its effect on a small compass placed in the vicinity of the long 
straight wire. This is basically Oersted’s experiment. If the current in the 
long straight wire is an alternating current produced by a sine wave 
generator, the B field surrounding the wire will also be time-varying. 
A changing magnetic field can induce a current in a wire, because it 
induces an electromotive force. This is Faraday’s law, and is part of the 
endless hall of mirrors of reciprocal interactions between electricity and 
magnetism that we have been emphasizing in class. Faraday’s law states 
that the induced emf in a coil of wire (in this case, that’s the “inductor 
coil”) placed near the long straight wire is 

Θ ൌ
ΔΦ
Δݐ
, (2.9.2)

where ∆Φ is the magnetic flux, which can be changed by changing the 
magnetic field. (The flux can be changed by a few other things too, which 
we will discuss in class!) So, if the magnetic field going through the 
inductor coil is changing, alternating in magnitude and direction because 
of the sine-wave generator, an alternating voltage will be induced in the 
wire. In other words: The current in the long wire oscillates because it is 
coming from a sine wave generator….which makes the B field around the 
wire oscillate….which makes the induced emf in the small “inductor coil” 
oscillate too! (Which makes an oscillating current in the inductor coil… 
And yes, the current in the inductor coil will generate a tiny little B field of 
its own…). According to Faraday's law, this induced voltage in the coil is 
proportional to the rate of change of the magnetic flux through the coil, 
and hence to the magnitude of the time-varying B field. Therefore, a 
measurement of the voltage induced in the coil, as the coil is placed at 
different distances from the wire, provides a relative measure of the 
magnitude of the B field at different distances from the wire. Note that the 
quantity actually measured is an alternating electric voltage, but its 



magnitude is proportional to the B field and will be taken to be a relative 
measurement of the B field at a given point. In other words, we are not 
measuring B directly. We are measuring the emf caused by B, and by 
measuring the emf at different distances r, we can infer how B changes as 
a function of distance. 

Experiment: 
1. Connect the circuit, using the direct current power supply.

Stand the long wire apparatus on its end so that the long wire is vertical. 
2. Turn on the power supply. (Notes: the DC power supply you

will use for this experiment is the power supply needs to be set to the 
maximum voltage). 

3. Place the compass on the platform at various positions around
the wire, and record the direction of the compass needle at each position. 
Record your measurements in Data Table. 

Questions: 
1. Explain how the earth’s magnetic field could affect your

results. Based only on your data in Data Table above, can you tell what 
side of the laboratory is facing (magnetic) North? 

2. Use the direction of the compass needles and the right hand rule
to determine whether the current in the wire is going up or down. 

3. Why does the plot of “B” vs. 1/r look like a straight line?
4. When the direct current is 2.00 [A] in a single wire of the

bundle of 10 wires, the total current in the bundle of wire that 
approximates the long straight wire is 20.0 [A]. What is the magnitude of 
the B field 3.00 cm from this long straight wire carrying a current of 
20.0 [A]? What is the magnitude of the B field 9.00 [cm] from the wire 
carrying 20.0 [A]? 

5. A constant current is in a long straight wire in the plane of the
paper in the direction shown below by the arrow. Point X is in the plane of 
the paper above the wire, and point Y is in the plane of the paper but below 
the wire. What is the direction of the B field at point X? What is the 
direction of the B field at point Y? 

2.10. Reflection and Refraction 

Purpose: 
The purpose of this experiment is to investigate two of the basic laws 

of optics, namely the law of reflection and Snell’s law. 



Reflection and refraction are two commonly observed optical 
properties of light. Whenever a light strikes the surface of some material at 
an angle, part of the wave is reflected and part is transmitted (or absorbed). 
Due to refraction, the velocity of transmitted light is less than the velocity 
before it entered the medium. The denser the medium, the more the light is 
slowed down. This is due to interaction between the light and the orbiting 
electrons in the atoms comprising the material. When light travels from 
one material into another, it not only may change velocity, but it may be 
bent at a different angle in the new medium than the angle at which it 
entered. Snell’s law states the relationship between the indices of 
refraction of the two materials, and the light’s angle of incidence and angle 
of refraction: 

݊ଵ sin α ൌ ݊ଶ sin β, (2.10.1)

Equipment: 
ray box, semicircular solid block, semicircular hollow plastic block, 

polar graph paper, tape. 
Experiment: 
1. Block off all slits on the ray box with masking tape, except for

the center slit. 
2. Place the solid semicircular block so that it is centered on the

polar graph paper with its flat edge facing the ray box. Secure the block to 
the graph paper with tape so that the flat side lies along the center line 
(parallel to the short side of the paper). The center of the block should be 
aligned with the center of the coordinate system. 

3. Angles will be measured with respect to the zero degree line on
the polar graph paper. Note that all angle measurements will be in the 
range 0    90. 

4. Starting with the light ray at normal incidence (perpendicular)
to the flat edge of the block, rotate the graph paper from 0 to 90 in 10 
increments, each time recording the angle of reflection and the angle of 
refraction as the light exits the block through its curved side. Be sure that 
the light enters the block at the center point. Record your measurements in 
Table. (Note: the amount of reflected light may be very small, so the 
reflected trace may be very faint. You will need to dim the room lights to 
record the angle of reflection.) 



Starting with the light ray at normal incidence (perpendicular) to the 
curved edge of the block, rotate the graph paper from 0 to 90, each time 
noting the angle of reflection and the angle of refraction as the light exits 
the block through its flat side. Be sure that the light exits the block at the 
center point. Find the angle at which the refracted ray totally disappears. 
This is the angle at which total internal reflection occurs. Repeat, but using 
the hollow semicircular block filled with water. Enter your measurements 
in Table. 

Questions: 
1. Using Snell’s Law, compute the value of the index of refraction

of the block. For the refractive index of air, use the value of 1.0. Compute 
n for the block for each 10 increment from 10 to 80 degrees, and compute 
the average value. Enter your calculated values in the fourth column of 
each table. 

2. Compare your calculated value of the average index of
refraction from Table. Are the values different? Would you expect them to 
be? 

3. Why do you need to make sure that the light enters the block
normal to the curved side, and exits the flat side at the center point? 

4. In the second orientation of the block (curved edge facing the
light box) at what observed angle does the refracted light ray disappear? Is 
this angle the same for the experiment air as for water? This is the critical 
angle at which total internal reflection occurs, and is given by the equation 
θୡ୰୧୲୧ୡୟ୪ ൌ sinିଵሺ݊ଶ ݊ଵ⁄ ሻ, where n1 is the index of refraction of the 
medium the light is leaving (in our experiment, either plastic or water), and 
n2 is the index of refraction of the medium the light is entering (in our 
case, this is air, and you can assume that n2 = 1). Compute θcritical using 
your average values of n in Table. How does your calculated value 
compare with your measured value? 

2.11. Diffraction, Wavelength, and Atomic Line Spectra 

Purpose: 
In this experiment, we will look at the diffraction of light, and how 

wavelengths can be calculated from diffraction. We will also look at 
atomic line spectra, which actually relate to the quantum-mechanical 
energy levels that electrons occupy around the nucleus of an atom; the 
wavelengths of emitted light from an atom relates to these energy levels.  



The wavelengths of the emission lines in the spectrum are given by 
the Rydberg formula: 

1
λ ൌ ܴܼଶ ቆ

1
݊୤୧୬ୟ୪ଶ െ

1
݊୧୬୧୲୧ୟ୪ଶ ቇ, (2.11.1)

where R = 1.097 · 107 m1, Z is the atomic number of the atom, nfinal is the 
principal quantum number of the final (lowest) energy state of the electron, 
and ninitial is the principal quantum number of the initial (highest) energy 
level of the electron. For various values of nfinal, different “series” of 
spectral lines occur. Specifically, for hydrogen, nfinal =1, 2, 3, 4 gives the 
Lyman, Balmer, Paschen and Brackett series, respectively. The energy of a 
photon is related to the corresponding wavelength of light as follows 
ܧ ൌ ݄݂ ൌ ݄ሺܿ λ⁄ ሻ. 

The shortest wavelengths of light emitted correspond to the greatest 
loss of energy and occur when the electron falls the greatest possible 
number of energy levels. This will happen when the initial energy level is 
the highest one possible, or ninitial = ∞. The longest wavelengths of light 
emitted corresponds to the smallest loss of energy and occur when the 
electron falls the least possible number of energy levels. This will happen 
when the initial energy level is just one principal quantum number above 
the final level. 

Experiment: 
1. The TA will show you various gas tubes. Each tube contains a

different element that, after being excited by running high voltage through 
it, will emit different spectral lines, which you can view through the 
diffraction gratings. This happens because the high voltage makes the 
electrons in the gas jump up to higher energy levels; light is emitted when 
the electrons “fall” back down again, emitting photons as they fall. Your 
task is to draw the lines you see in the demo in the boxes in Table, at the 
locations where they are observed. Once you have been shown all the gas 
tubes and sketched the spectra you observe, compare your drawing to the 
diagrams provided in order to identify which element was in each tube 
element in each tube. Remember that 400 nm is UV light, and 700 nm is 
infrared. 

2. In this part of the experiment, you will look at the interference
of light waves, and use the properties of constructive interference to 
calculate the wavelengths of light in the spectrum you observe. You will 



be looking at the spectrum from a regular 150 Watt light bulb. This is a 
continuous spectrum, so you won’t see isolated lines. Like all waves, light 
experiences both constructive and destructive interference. Here, we will 
actually investigate equations for the two different kinds of interference. 
Constructive interference will occur when the difference in the distance 
traveled by two light waves is an integer multiple of the wavelength: 

Δ݄ݐܽ݌ ൌ ݉λ,where ݉ ൌ 1, 2, 3, … (2.11.2)

Destructive interference will occur when the difference in the 
distance traveled by two light waves is a half-integer multiple of the 
wavelength. In other words: 

Δ݄ݐܽ݌ ൌ ൬݉ ൅
1
2൰ λ,where ݉ ൌ 1, 2, 3, … (2.11.3)

Procedure: 
Your goal is to measure the wavelength of each color in the visible 

spectrum. You will have to be able to use your trigonometry skills to 
calculate the angle θ. Feel free to mark the masking tape on the table 
where each color is located so you can measure all the colors at once. 
Since measuring the angle correctly is VERY important, make sure to set 
up the sides of the triangle carefully. The length of the adjacent side is the 
distance between the light source (the filament in the bulb) and the 
diffraction grating. The length of the opposite side is the distance from the 
filament to where you see the band of light with the color you are 
measuring. Place the light bulb exactly one meter from the edge of the 
table. It is important to be lined up with the light bulb to measure exactly 
one meter. (This means that the length of the adjacent side of the triangle 
is just equal to 1 meter.) Then place the tape across the table in front of the 
light bulb. Mark a line on the tape where the filament is located. Turn on 
the light bulb and look through the diffraction grating, holding the grating 
at the edge of the table. Again, be sure to line up with the light bulb. Off to 
the side of the light bulb, you should see a continuous spectrum. Have 
your lab partner draw a line on the masking tape where you see the middle 
of each color. Make sure to label each line (green, blue, etc.). Record the 
distance of each color from the filament (this is the length of the opposite 
side). Enter your measurements in Table; then calculate the angle, and the 



wavelength. To calculate the wavelength, you will need to know the 
distance d between the gratings in the diffraction grating. There are 
1000 lines per millimeter, which means that d = 1000 nm. Use d in units of 
nm, so that you will get the wavelength in nm also. 

Analysis: 
1. Calculate the wavelengths of the colors in the visible spectrum

based on your measurements in Part 2 of the experiment; enter the values 
in the table in Part 2. 

2. Calculate the longest and shortest wavelengths for the hydrogen
Lyman transitions. 

3. Calculate the longest and shortest wavelengths for the hydrogen
Balmer transitions. 

4. Calculate the longest and shortest wavelengths for the hydrogen
Paschen transitions. 

5. Based on your calculations for questions, which series (Lyman,
Balmer or Paschen) are you observing when you looked at the visible part 
of the spectrum for atomic hydrogen in Part 1 of the experiment? 
EXPLAIN! 



SUMMARY 

This textbook is intended for physics two-year introductory courses 
requiring algebra and some trigonometry and calculus. This physics 
textbook is written for students. It is based on the teaching and research 
experience of numerous physicists and influenced by a strong recollection 
of their own struggles as students. After reading this book, we hope you 
see that physics is visible everywhere. Applications present different 
examples from practical physics. 

There is considerable latitude on the part of the instructor regarding 
the use, organization, level, and content of this book. By choosing the 
types of problems assigned, the instructor can determine the level of 
sophistication required of the student. Course Physics is organized such 
that topics are introduced conceptually with a steady progression to precise 
definitions and analytical applications. The chapters on modern physics are 
more complete than many other editions textbooks with an entire chapter 
devoted to laboratory experiments in physics. 
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